Chapter 1

MINIMIZATION AND MOUNTAIN-PASS THEOREMS

In this introductory chapter, we consider the concept on differentiability of mappings in Banach spaces, Fréchet and Gâteaux derivatives, second-order derivatives and general minimization theorems. Variational principles of Ekeland [Ek1] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais–Smale conditions and mountain-pass theorems are considered. The deformation approach and ε–variational approach are applied to prove the mountain-pass theorem and its various extensions.

Let E be a Banach space, $X \subset E$ be an open subset, $f : X \rightarrow \mathbb{R}$ be a differentiable functional. Minimax theorems characterize a critical value of a functional f as a minmax over a suitable class \mathcal{A} of subsets of X

$$c = \inf_{A \in \mathcal{A}} \sup_{x \in A} f(x).$$

The basic ideas on minimax characterization of critical points go back to the work of Lusternik & Schnirelman [LS]. In this chapter, we present the mountain-pass theorem of Ambrosetti–Rabinowitz and some of its extensions. Their statements involve a compactness assumption, the so called Palais–Smale (PS) condition and variants. In a general form, it has been given by Palais [Pal]. During the last two decades, minimax theorems have
been extensively developed, generalizing the assumptions on differentiability of the functional, the \((PS)\) type conditions and geometric conditions on the functional. In a general form, the mountain-pass theorem has been proved for continuous functionals by Degiovanni & Marzocchi [DM]. For discontinuous functionals it has been proved by Ribarska, Tsachev and Krastanov [RTK1].

In this chapter we consider deformation theorems of Rabinowitz [Ra1], [Ra2], Willem [Wil1], [Wil3], Bartolo, Benci and Fortunato [BBF] and Palais–Smale type conditions of Cerami [Ce] \((PSC)_c\), Schechter [Sch1], [Sch2] \((PS)_{c,\psi}\), and Struwe [St1], [St2], \((PS)^\ast_c\)-condition in scales of Banach spaces. We introduce \((PS)_{c,\varphi}\)-condition which “lies between” \((PSC)_c\) and \((PS)_{c,\psi}\), and extend some deformation theorems. We prove the mountain-pass theorem of Ambrosetti & Rabinowitz [Ara] and its extensions due to Cerami [Ce], Willem [Wil1], Pucci & Serin [PS1], Rabinowitz [Ra1], Schechter [Sch1], [Sch2], Brézis & Nirenberg [BN], Aubin & Ekeland [AE], Ghossoub & Preiss [GP]. A variant of a three critical point theorem with \((PS)_{c,\psi}\) condition is proved.

1.1 Differential Calculus for Mappings in Banach Spaces

1.1.1 Fréchet and Gâteaux Derivatives

A natural extension of the derivative of a function of one variable is the Fréchet derivative of a mapping in a Banach space.

Let \(X\) and \(Y\) be Banach spaces with norms \(||\cdot||_X\) and \(||\cdot||_Y\) respectively. Let \(U \subset X\) be an open subset and \(F : U \to Y\) be a mapping. When \(Y = \mathbb{R}\), \(F\) is said to be a functional.

We use the notation \(r(h) = o(||h||_X)\) for the mapping \(r : X \to Y\) if and only if (iff)

\[
\lim_{h \to 0} \frac{||r(h)||_Y}{||h||_X} = 0,
\]

which means that for every \(\varepsilon > 0\) there exists \(\delta > 0\) such that if \(||h||_X < \delta\) then \(||r(h)||_Y < \varepsilon ||h||_X\).

Definition 1.1. Let \(x\) be a point of the open subset \(U \subset X\). The mapping \(F : U \to Y\) is Fréchet-differentiable at \(x \in U\) if there exists a linear operator \(A \in L(X,Y)\) such that

\[
F(x + h) - F(x) - Ah = o(||h||).
\] (1.1)
The operator A is said to be Fréchet derivative of the mapping F at x and can be denoted as $DF(x)$ or $F'(x)$. It has the linear property

$$A(c_1 h_1 + c_2 h_2) = c_1 Ah_1 + c_2 Ah_2,$$

for all $h_1, h_2 \in X$ and $c_1, c_2 \in \mathbb{R}$. Let $F : U \to Y$ be differentiable at every point of U. The mapping $DF : U \to L(X, Y)$ is called the Fréchet-derivative of F. We say that F is a C^1 mapping iff DF is continuous as a mapping from U to $L(X, Y)$.

Next we present some other properties of the Fréchet derivative.

1. The operator $A = DF(x)$ satisfying (1.1) is unique.
2. If $F : U \to Y$ is Fréchet-differentiable at $x \in U$, then F is continuous at x.
3. If $F : U \to Y$ is Fréchet-differentiable according to a norm in X, then it is Fréchet-differentiable according to any norm equivalent to the first norm.
4. If $F, G : U \to Y$ are Fréchet-differentiable at $x \in U$, then $aF + bG$, where $a, b \in \mathbb{R}$, is Fréchet-differentiable at $x \in U$ and

$$D(aF + bG)(x)h = aDF(x)h + bDG(x)h.$$

5. Let $F : U \to Y$, $G : V \to Z$ be mappings with U and V open subsets of X and Y such that $V \supset F(U)$. Let $G \circ F : U \to Z$ be the composition mapping. If F is Fréchet-differentiable at $x \in U$ and $G : V \to Z$ is Fréchet-differentiable at $y = F(x) \in V$, then GF is Fréchet-differentiable at x and

$$D(G \circ F)(x)h = DG(y)DF(x)h.$$

Denote $\mathbb{R}^+ = [0, +\infty)$.

We give some examples of Fréchet derivatives.

Let H be a Hilbert space with scalar product $(.,.)$ and norm $||.||$.

1. The functional $F : H \to \mathbb{R}^+$

$$F(x) = \frac{1}{2} ||x||^2 = \frac{1}{2} (x, x)$$

is Fréchet-differentiable and

$$F'(x)h = (x, h).$$

2. The functional $F : H \to \mathbb{R}^+$

$$F(x) = ||x||$$
is Fréchet-differentiable for \(x \neq 0 \) and
\[
F'(x) h = \frac{(x, h)}{\|x\|}, \quad x \neq 0.
\]

This functional is not Fréchet-differentiable at 0.

3. The functional \(F(x) = \frac{1}{2}(Ax, x) + (b, x) \), where \(A \in L(H, H) \) and \(b \in H \), is Fréchet-differentiable and
\[
F'(x) h = (Ax + b, h).\]

4. Let \(X = \mathbb{R}^n, Y = \mathbb{R}^m, x = (x_1, \ldots, x_n) \) and \(f \in C^1(\mathbb{R}^n, \mathbb{R}^m) \) be the mapping \(f(x) = [f_1(x), \ldots, f_m(x)]^T \), where \(B^T \) means the transpose matrix of the matrix \(B \).

Then \(A = f'(x) \in L(\mathbb{R}^n, \mathbb{R}^m) \) and
\[
A = f'(x) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\
\vdots & & \vdots \\
\frac{\partial f_m}{\partial x_1}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x)
\end{bmatrix}.
\]

For a differentiable functional \(f : X \to \mathbb{R} \) we have \(f'(x) \in L(X, \mathbb{R}) = X^* \), where \(X^* \) is the dual space of \(X \). Since it will be clear from the context we keep \(||\cdot|| \) to denote also the norm in \(X^* \).

Let \(X = H \) be a Hilbert space with inner product \((.,.)\). By the Riesz representation theorem there exists a unique element \(\nabla f(x) \in H \) such that
\[
f'(x) h = (\nabla f(x), h), \quad \forall h \in H.
\]

The operator \(\nabla f : H \to H \) is called a potential operator with the potential \(f : H \to \mathbb{R} \).

Many equations of Mathematical Physics have the operator form \(f'(x) = 0 \) in an appropriate Hilbert space \(H \). The equation \(f'(x) = 0 \) is said to be the Euler–Lagrange equation of the functional \(f : H \to \mathbb{R} \). Its solutions are assumed in the weak sense, i.e.,
\[
(\nabla f(x), h) = 0, \quad \forall h \in H,
\]
and are considered as critical points of the functional \(f : H \to \mathbb{R} \).

Another derivative of a functional \(f \) is the directional derivative or so called Gâteaux derivative of \(f \).

Definition 1.2. Let \(F : U \to Y \) be a mapping and \(x \in U \). We say that \(F \) is Gâteaux-differentiable at \(x \) if there exists \(A \in L(X, Y) \), such that
\[
\lim_{t \to 0} \frac{||F(x + th) - F(x)||_Y}{t} = Ah, \quad \forall h \in X. \tag{1.2}
\]
The mapping A is uniquely determined. It is called \textit{Gâteaux derivative of f at x} and is denoted by $D_G F(x)$ or $F'_G(x)$. If F is Fréchet-differentiable it is clear that it is Gâteaux-differentiable. The converse is not true which can be seen in the following example in \mathbb{R}^2.

\textbf{Example 1.1.} The function $f : \mathbb{R}^2 \to \mathbb{R}$

\[
f(x, y) = \begin{cases}
 \left(\frac{x^2 y}{x^4 + y^2}\right)^2, & y \neq 0, \\
 0, & y = 0,
\end{cases}
\]

is Gâteaux-differentiable at $(0,0)$, but not Fréchet-differentiable at $(0,0)$.

\textit{Proof.} It is easy to show that f is Gâteaux-differentiable at $(0,0)$. If $h = (h_1, h_2)$, $h_2 \neq 0$ we have

\[
\lim_{t \to 0} \frac{f(th) - f(0)}{t} = \lim_{t \to 0} \frac{t (h_2^2 h_2)^2}{(t^2 h_1^4 + h_2^4)^2} = 0.
\]

If f is Fréchet-differentiable at $(0,0)$ it should be $f'(0,0) = 0$. This is not true because taking $h = (h_1, h_1^2) \to (0,0)$ we get

\[
\lim_{\|h\| \to 0} \frac{|f(h) - f(0)|}{\|h\|} = \lim_{h_1 \to 0} \left(\frac{h_1^4}{h_1^4 + h_1^4} \right)^2 \frac{1}{\sqrt{h_1^2 + h_1^4}} = \frac{1}{4} \lim_{h_1 \to 0} \frac{1}{\sqrt{h_1^2 + h_1^4}} = \infty.
\]

\textit{EndProof}

Note that the Gâteaux-differentiability at a point of a mapping does not imply even the continuity at this point. For example the function

\[
g(x, y) = \begin{cases}
 1 & \text{if } y = x^2 \\
 0 & \text{if } y \neq x^2
\end{cases}
\]

is Gâteaux differentiable at $(0,0)$, but is not continuous at $(0,0)$.

Although there is a result when Gâteaux-differentiability imply Fréchet-differentiability.

Denote by \langle , \rangle the duality pairing between X^* and X and shortly \lim_j instead of $\lim_{j \to \infty}$. We say that f is a C^1 functional, and write $f \in C^1(U, \mathbb{R})$,
if the Fréchet-derivative $f'(x)$ exists at every point x of U and the mapping $x \mapsto f'(x)$ is continuous from U to X^*, i.e., if $\lim_j x_j = x \in U$ then

$$\lim_j \langle f'(x_j) - f'(x), v \rangle = 0, \quad \text{uniformly on } \{v \in X : \|v\| \leq 1\}.$$

Theorem 1.1. Suppose that $f : U \to \mathbb{R}$ has a continuous Gâteaux derivative on U. Then f is Fréchet-differentiable and $f \in C^1(U, \mathbb{R})$.

This result follows by a variant of the mean-value theorem.

Theorem 1.2. Let $f : U \to \mathbb{R}$ be a Gâteaux-differentiable on U and $x_1, x_2 \in U$. Then

$$|f(x_1) - f(x_2)| \leq \sup_{t \in [0, 1]} \|D_G f(x_1 + t(x_2 - x_1))\| \cdot \|x_1 - x_2\|$$

Let Ω be an open subset of \mathbb{R}^N with finite measure $|\Omega| < \infty$. Denote by $L^q(\Omega), 1 < q < \infty$ the usual Lebesgue space of integrable functions.

Example 1.2. The functional $\varphi : L^{p+1}(\Omega) \to \mathbb{R}$, $1 < p < \infty$,

$$\varphi(u) = \frac{1}{p+1} \int_{\Omega} |u(x)|^{p+1} dx,$$

is of class $C^1(L^{p+1}(\Omega), \mathbb{R})$ and

$$\langle \varphi'(u), h \rangle = \int_{\Omega} u(x) |u(x)|^{p-1} h(x) dx.$$

Proof. We use Theorem 1.1 and show that there exists φ'_G and that it is continuous. Let $u, h \in L^{p+1}(\Omega)$ and $t \in [0, 1]$. By the mean-value theorem, there exists $\xi \in [0, 1]$ such that

$$\frac{1}{(p + 1)|t|} |u(x) + th(x)|^{p+1} - |u(x)|^{p+1}|$$

$$= |u(x) + t\xi h(x)|^p |h(x)| \leq |u(x)| + |h(x)|^p |h(x)|.$$

By Hölder inequality, it follows
\[
\int_{\Omega} ||u(x)| + |h(x)||^p |h(x)| \, dx
\leq \left(\int_{\Omega} ||u(x)| + |h(x)||^{p+1} \, dx \right)^{\frac{p}{p+1}} \left(\int_{\Omega} |h(x)|^{p+1} \, dx \right)^{\frac{1}{p+1}}
\leq \left(2^p \int_{\Omega} \left(|u(x)|^{p+1} + |h(x)|^{p+1} \right) \, dx \right)^{\frac{p}{p+1}} \left(\int_{\Omega} |h(x)|^{p+1} \, dx \right)^{\frac{1}{p+1}}
< \infty.
\]

Then, by Lebesgue theorem, it follows

\[
\langle \varphi'_G(u), h \rangle = \lim_{t \to 0} \frac{1}{(p+1) t} \int_{\Omega} |u(x) + th(x)|^{p+1} - |u(x)|^{p+1} \, dx
\]

\[
= \lim_{t \to 0} \int_{\Omega} |u(x) + t\xi h(x)|^p \text{sgn}(u(x) + t\xi h(x)) h(x) \, dx
\]

\[
= \int_{\Omega} |u(x)|^p \text{sgn}u(x) h(x) \, dx
\]

\[
= \int_{\Omega} u(x) |u(x)|^{p-1} h(x) \, dx.
\]

To prove the continuity of \(\varphi'_G(u) \) we need to prove that if \(\lim_j u_j = u \) in \(L^{p+1}(\Omega) \) then

\[
\lim_j \langle \varphi'_G(u_j) - \varphi'_G(u), v \rangle = 0, \quad \text{if } ||v||_{L^{p+1}} \leq 1. \tag{1.3}
\]

By the continuity of so-called superposition (or Nemitskii) operator (see Vainberg [V]) \(g : L^{p+1}(\Omega) \to L^{\frac{p+1}{p}}(\Omega) \)

\[
g(u) := |u|^{p-1},
\]

it follows that

\[
|\langle \varphi'_G(u_j) - \varphi'_G(u), v \rangle| \leq ||g(u_j) - g(u)||_{L^{\frac{p+1}{p}}} ||v||_{L^{p+1}} \to 0,
\]
which proves (1.4). End Proof

Recall the notion of superposition (or Nemitskii) operator. Let Ω be an open subset of \mathbb{R}^N with finite measure $f \in C^0(\bar{\Omega} \times \mathbb{R})$ and $1 \leq p, q < \infty$. The operator

$$N_f u(x) := f(x, u(x)),$$

is called a superposition operator.

A function $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is called a Carathéodory function if:

1. for each fixed $s \in \mathbb{R}$, the function $x \mapsto f(x, s)$ is Lebesgue measurable in Ω,
2. for almost every $x \in \Omega$, the function $s \mapsto f(x, s)$ is continuous on \mathbb{R}.

Theorem 1.3. Let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function. Then:

1. The function $x \mapsto f(x, u(x))$ is a measurable function for every measurable function $u : \Omega \to \mathbb{R}$.
2. If Ω has finite measure, the Nemitskii operator $N_f : \mathcal{M} \to \mathcal{M}$ is a continuous, where \mathcal{M} is the space of real-valued measurable functions on Ω, equipped with the topology of convergence in measure.
3. If Ω is a bounded domain and f satisfies the growth condition

$$|f(x, s)| \leq a|s|^{p-1} + b(x), \quad (1.4)$$

for $p > 1, a > 0$ and $b(x) \in L^q(\Omega)$, where $1/p + 1/q = 1$, then the Nemitskii operator $N_f : L^p(\Omega) \to L^q(\Omega)$ is continuous.
4. Let N_F be the Nemitskii operator associated to the function

$$F(x, s) = \int_0^s f(x, t) dt,$$

where f satisfies (1.4). Then $N_F : L^p(\Omega) \to L^1(\Omega)$ is a continuous operator. Moreover $\mathcal{F}(u) = \int_\Omega F(x, u(x)) dx$ defines a continuously Fréchet-differentiable functional and $\mathcal{F}'(u) = N_f$.

We refer the reader to Berger [B], Vainberg [V] for the properties of the superposition operator.

1.1.2 Second-order derivatives

Let $F : X \to Y$ be a differentiable mapping in the open set $U \subset X$ and consider $F : U \to L(X, Y)$. If this mapping is differentiable at a point
Minimax Theorems

If \(x \in U \), then its derivative \((F')' (x) \in L(X, L(X,Y)) \) is said to be second derivative of \(F \) at \(x \) and can be noted as \(F'' (x) \) or \(D^2 F (x) \). It is convenient to consider \(D^2 F (x) \) as a bilinear map on \(X \). We recall that \(B : X \times X \to Y \) is a continuous bilinear map if

1. For every \(x = (x_1, x_2) \) and \(x' = (x'_1, x'_2) \in X \times X \) and every \(\alpha \) and \(\beta \in \mathbb{R} \)

\[
B(\alpha x_1 + \beta x_2, x'_1) = \alpha B(x_1, x'_1) + \beta B(x_2, x'_1),
\]

\[
B(x_1, \alpha x'_1 + \beta x'_2) = \alpha B(x_1, x'_1) + \beta B(x_1, x'_2).
\]

2. There exists a positive number \(M > 0 \) such that

\[
\|B(x, x')\|_Y \leq M \|x\|_X \|x'\|_X.
\]

The norm of bilinear map \(B \) is defined as

\[
\|B\|_b = \sup \left\{ \|B(x, x')\|_Y : \|x\|_X \leq 1, \|x'\|_X \leq 1 \right\}.
\]

The space of bilinear maps from \(X \times X \) to \(Y \) is denoted by \(B(X^2, Y) \). There is a natural isometry \(i : L(X, L(X,Y)) \to B(X^2, Y) \) defined by

\[
(iA)(x, x') = Ax(x'), \quad \forall (x, x') \in X^2, \|A\| = \|iA\|_b.
\]

Therefore we can consider \(F''(x) \) as an element of \(B(X^2, Y) \). The map \(F'' : U \to B(X^2, Y) \) is said to be the second Fréchet derivative of \(F \).

If \(F'' \) is continuous from \(U \) to \(B(X^2, Y) \) we say that \(F \in C^2(X,Y) \). If \(F \in C^2(X,Y) \) we have the Taylor’s formula

\[
F(x + h) = F(x) + F'(x)h + \frac{1}{2} F''(x)(h, h) + o(\|h\|^2_X).
\]

We recall that a linear operator \(L : X \to Y \) is called a Fredholm operator if the dimension of \(\mathcal{N}(L) \) and codimension of \(\mathcal{R}(L) \) are finite, where \(\mathcal{N}(L) \) and \(\mathcal{R}(L) \) denote the kernel and the range of \(L \) respectively. This implies that \(\mathcal{R}(L) \) is closed.

Let \(X = H \) be a Hilbert space, \(Y = \mathbb{R} \), \(U \subset H \) be an open subset and \(F \in C^2(U, \mathbb{R}) \). From the Riesz representation theorem there exists unique \(Lh \in H \) such that

\[
F''(x)(h,k) = (Lh, k),
\]
for all $k \in H$. The operator $L : H \to H$ is symmetric, i.e.,
\[(Lh,k) = (h,Lk), \quad \forall h, k \in H,
\]
and we identify $L = F''(x)$. If $F''(x)$ is a Fredholm operator then
\[H = \mathcal{N}(F''(x)) \oplus \mathcal{R}(F''(x)).\]

Assume that x is a critical point of $F \in C^2(H, \mathbb{R})$. The point x is said to be a non-degenerate critical point if $L = F''(x) : H \to H$ is an isomorphism. It is shown in Cartan [Car], that if x is a non-degenerate critical point and $L = F''(x)$ is a positive-definite operator, that is,
\[(Lh,h) \geq 0, \quad \forall h \in H,
\]
then there exists a positive number $\lambda > 0$ such that
\[(Lh,h) \geq \lambda \|h\|^2. \quad (1.6)
\]

We use the notation $L_1 \geq L_2$ for symmetric operators L_1 and $L_2 : H \to H$ iff
\[(L_1 h,h) \geq (L_2 h,h), \quad \forall h \in H.
\]

If x is a non-degenerate critical point and $L = F''(x)$ is a positive-definite operator, from Taylor’s formula (1.5), we have
\[
F(x + h) - F(x) = \frac{1}{2} (Lh,h) + o(\|h\|^2) \\
\geq \frac{\lambda}{2} \|h\|^2 + o(\|h\|^2).
\]

And it follows that x is a point of strict local minima, see [Car].

In an analogous way, if x is a non-degenerate critical point and L is negative-definite, that is,
\[(Lh,h) \leq 0, \quad \forall h \in H,
\]
then x is a point of strict local maxima.

If L is an indefinite operator the critical saddle points are distinguished with respect to the so called Morse index. The Morse index of the critical point x of the functional $F \in C^2(H, \mathbb{R})$ is defined as the supremum of the dimensions of the vector subspaces of H on which $L = F''(x)$ is negative-definite. The nullity of x is defined as the dimension of $\mathcal{N}(F''(x))$.

For detailed proofs of above mentioned statements we refer the reader to Ambrosetti & Prodi [APr], Cartan [Car], Kolmogorov & Fomin [KF].
1.2 Variational Principles and Minimization

1.2.1 Lower Semicontinuous Functions

Let X be a Banach space $f : X \to \mathbb{R}$ a functional bounded from below. A sequence $(x_j)_j$ is said to be a minimizing sequence if

$$\lim_{j} f(x_j) = \inf_{x \in X} f(x).$$

The functional $f : X \to \mathbb{R}$ is said to be lower semi-continuous (respectively weakly lower semi-continuous) if whenever $\lim_j x_j = x$ strongly ($\lim_j x_j = x$ weakly), it follows

$$\liminf_{j \to \infty} f(x_j) \geq f(x).$$

The functional $f : X \to \mathbb{R}$ is sequentially weakly continuous if whenever $\lim_j x_j = x$ weakly, it follows

$$\lim_j f(x_j) \geq f(x).$$

Some properties of semi-continuity follow from the definition:

1. The sum of two l.s.c (w.l.s.c.) functionals is a l.s.c (w.l.s.c.) functional.

2. The product of l.s.c (w.l.s.c.) functionals with positive constant is a l.s.c (w.l.s.c.) functional.

3. If $(f_j)_j$ is a family of l.s.c (w.l.s.c.) functionals then the function $\sup_j f_j$ is a l.s.c (w.l.s.c.) functional.

We present a criterion for weak lower semicontinuity (see Berger [Ber], Chapter 6).

Theorem 1.4. Let X be a reflexive Banach space, $f : X \to \mathbb{R}$ be a functional represented as the sum $f = f_1 + f_2$, where f_1 is continuous and convex and f_2 is sequentially weakly continuous. Then f is weakly lower semi-continuous.

We have the following results for minimization (see Mawhin & Willem [MW2] and Berger [Ber]).

Theorem 1.5. Let f be a weakly lower semi-continuous functional on the reflexive Banach space X with a bounded minimizing sequence. Then f has a minimum on X.

A functional f is said to be coercive if $f(x) \to \infty$ as $\|x\| \to \infty$.

Theorem 1.6. Let f be a weakly lower semi-continuous functional bounded from below on the reflexive Banach space X. If f is coercive, then $c = \inf f$ is attained at a point $x_0 \in X$.
1.2.2 Ekeland Theorem in Complete Metric Spaces

Let M be a complete metric space and $\Phi : M \to \mathbb{R}$ a lower semi-continuous functional, bounded below. If $(u_j)_j$ is a minimizing sequence, then for every $\varepsilon > 0$ there exists j_0 such that for $j > j_0$

$$\Phi (u_j) \leq \inf_M \Phi + \varepsilon.$$

We say that u is an ε–minimum point of Φ if

$$\Phi (u) \leq \inf_M \Phi + \varepsilon.$$

Ekeland theorem [Ek1] considers the existence of ε–minimum points.

Theorem 1.7 (Ekeland Principle, strong form, 1979). Let M be a complete metric space and $\Phi : M \to \mathbb{R}$ be a lower semicontinuous functional which is bounded from below. Let $k > 1$, $\varepsilon > 0$ and $u \in M$ be an ε–minimum point of Φ. Then there exists $v \in M$ such that

$$\Phi (v) \leq \Phi (u), \quad (1.7)$$

$$d (u,v) \leq \frac{1}{k}, \quad (1.8)$$

$$\Phi (v) < \Phi (w) + \varepsilon kd (w,v), \quad \forall w \neq v. \quad (1.9)$$

Proof. Denote for simplicity $d_k (u,v) := kd (u,v)$ and define a partial ordering in M

$$u \prec v \iff \Phi (u) \leq \Phi (v) - \varepsilon d_k (u,v).$$

We have

$$u \prec u, \quad \forall u \in M,$$

$$u \prec v, \quad v \prec u \Rightarrow u = v, \quad \forall u, v \in M,$$

$$u \prec v, \quad v \prec w \Rightarrow u \prec w, \quad \forall u, v, w \in M.$$

Let us prove the transitivity. Assume that for $u, v, w \in M, u \prec v$ and $v \prec w$, which means

$$\Phi (u) \leq \Phi (v) - \varepsilon d_k (u,v),$$

and

$$\Phi (v) \leq \Phi (w) - \varepsilon d_k (v,w).$$
We prove that
\[\Phi(u) \leq \Phi(w) - \varepsilon d_k(u, v). \]

Indeed we have
\[
\begin{align*}
\Phi(u) &\leq \Phi(v) - \varepsilon d_k(u, v) \\
&\leq \Phi(w) - \varepsilon (d_k(v, w) + d_k(u, v)) \\
&\leq \Phi(w) - \varepsilon d_k(u, w).
\end{align*}
\]

Now define a sequence of subsets \((S_n)_n\). Let \(u_1 = u\) and \(S_1 := \{w \in M : w \prec u_1\}\). We construct inductively a sequence \((u_n)_n\) as follows:

\[
\begin{align*}
u_2 &\in S_1, \quad \Phi(u_2) \leq \inf_{S_1} \Phi + \frac{\varepsilon}{2^n}, \\
S_2 &= \{w \in M : w \prec u_2\}, ... \\
u_{n+1} &\in S_n, \quad \Phi(u_{n+1}) \leq \inf_{S_n} \Phi + \frac{\varepsilon}{2^{n+1}}, \\
S_n &= \{w \in M : w \prec u_n\}.
\end{align*}
\]

We have
\[
S_1 \supset S_2 \supset ... \supset S_n \supset ...
\]
\[u_1 \succ u_2 \succ ... \succ u_n \succ ... \]

Each \(S_n\) is closed. Indeed let \(v_j \in S_n\) and \(\lim_j v_j = v \in M\) which means
\[\Phi(v_j) \leq \Phi(u_n) - \varepsilon d_k(v_j, u_n). \]

Letting \(j \to \infty\), by the lower semicontinuity of \(\Phi\) and continuity of the distance \(d_k\), we get
\[\Phi(v) \leq \Phi(u_n) - \varepsilon d_k(v, u_n), \]

which means that \(v \in S_n\).

Next we have
\[\lim_{n \to \infty} \text{diam} S_n = 0. \quad (1.10) \]

Indeed let \(w \in S_n\).
Minimization and Mountain-pass Theorems

$$\Phi (w) \leq \Phi (u_n) - \varepsilon d_k (w, u_n).$$

By $w \in S_n \subset S_{n-1}$

$$\Phi (u_n) \leq \inf_{S_{n-1}} \Phi + \frac{\varepsilon}{2n} \leq \Phi (w) + \frac{\varepsilon}{2n}$$

and

$$\Phi (u_n) - \frac{\varepsilon}{2n} \leq \Phi (w) \leq \Phi (u_n) - \varepsilon d_k (w, u_n).$$

So, it follows

$$d_k (w, u_n) \leq \frac{1}{2n}, \quad \forall w \in S_n.$$

Then for w_1 and $w_2 \in S_n$

$$d_k (w_1, w_2) \leq d_k (w_1, u_n) + d_k (w_2, u_n) \leq \frac{1}{2^{n-1}},$$

which proves (1.10).

From the principle of included intervals, there exists unique $v \in M$

$$\bigcap_{n=1}^{\infty} S_n = \{v\}.$$

We prove that v satisfies (1.7)-(1.9). Since $v \in S_1$ and $v \prec u_1 = u$ it follows

$$\Phi (v) \leq \Phi (u) - \varepsilon d_k (u, v) \leq \Phi (u)$$

which is (1.7).

Let $w \neq v$. If $w \prec v$ it follows $w \in \bigcap_{n=1}^{\infty} S_n$ and then $w = v$. Therefore

$$\Phi (w) > \Phi (v) - \varepsilon d_k (w, v)$$

which is (1.9). Finally, by $\lim_n u_n = v$ and

$$d_k (u, u_n) \leq \sum_{j=1}^{n-1} d_k (u_j, u_{j+1}) \leq \sum_{j=1}^{n-1} \frac{1}{2^j} \leq 1,$$

it follows that $d_k (u, v) \leq 1$, which completes the proof. End Proof.

We present some corollaries derived from the Ekeland principle.

Corollary 1.2 (Ekeland principle, weak form, 1979). Let (M, d) be a complete metric space and $\Phi : M \to \mathbb{R}$ be a lower semicontinuous functional.
bounded from below. Then for every $\varepsilon > 0$ there exists an ε-minimum point of Φ, $v \in M$ such that

$$\Phi (v) < \Phi (w) + \varepsilon d (w, v), \quad \forall w \in M, w \neq v.$$

Corollary 1.3. Let (M, d) be a complete metric space, $\Phi : M \to \mathbb{R}$ be lower semicontinuous functional bounded from below. Let $\varepsilon > 0$ and $u \in M$ be an ε-minimum point of Φ. Then there exists $v \in M$ such that

$$\Phi (v) \leq \Phi (u),$$
$$d (u, v) \leq \sqrt{\varepsilon},$$
$$\Phi (v) < \Phi (w) + \sqrt{\varepsilon} d (w, v), \quad \forall w \neq v.$$

1.2.3 Palais–Smale Conditions and Minimization

Minimizing sequences for differentiable functionals are convergent under certain compactness conditions. We shall use later so called Palais–Smale ((PS) for short) conditions.

Let X be a Banach space, $f : X \to \mathbb{R}$ be a differentiable functional.

Definition 1.3 (Palais, 1970). A C^1-functional $f : X \to \mathbb{R}$ satisfies the Palais–Smale (PS) condition if every sequence $(x_j)_j$ in X such that $f (x_j)$ is bounded and $\lim_j f' (x_j) = 0$ in X^* has a convergent subsequence.

From (PS) condition, it follows that the set of critical points for a bounded functional is compact. A variant of (PS) condition, noted as (PS)$_c$, was introduced by Brézis, Coron and Nirenberg [BCN].

Definition 1.4 (Brézis, Coron, Nirenberg, 1980). Let $c \in \mathbb{R}$. A C^1 functional $f : X \to \mathbb{R}$ satisfies the (PS)$_c$ condition if every sequence $(x_j)_j$ in X such that $\lim_j f (x_j) = c$ and $\lim_j f' (x_j) = 0$ in X^* has a convergent subsequence.

It is clear that (PS) condition implies the (PS)$_c$ condition for every $c \in \mathbb{R}$. The (PS)$_c$ condition implies the compactness of the set of critical points at a fixed level c.

Theorem 1.8. Let $f : X \to \mathbb{R}$ be a C^1 functional bounded below. Then, for each $\varepsilon > 0$ and $x \in X$ such that

$$f (x) \leq \inf_X f + \varepsilon,$$

there exists $y \in X$ such that

$$f (y) \leq f (x),$$
$$\|x - y\| \leq \sqrt{\varepsilon},$$
$$\|f' (y)\| \leq \sqrt{\varepsilon}.$$
Proof. By Corollary 1.2 applied to $M = X$ and $\Phi = f$ we have that there exists y such that

$$f(z) > f(y) - \sqrt{\varepsilon}||y - z||, \quad \forall z \neq y. \quad (1.11)$$

Taking $z = y + th, \ t > 0, \ h \in X, \ ||h|| = 1$, in (1.11) we get

$$f(y + th) - f(y) > -\sqrt{\varepsilon}t.$$

Letting $t \to 0$ we obtain

$$\langle f'(y), h \rangle \geq -\sqrt{\varepsilon}, \quad \forall h \in X, \ ||h|| = 1.$$

Changing h with $-h$ we have

$$-\sqrt{\varepsilon} \leq \langle f'(y), h \rangle \leq \sqrt{\varepsilon}, \quad \forall h \in X, \ ||h|| = 1,$$

which means that $||f'(y)|| \leq \sqrt{\varepsilon}$. End Proof

By Theorem 1.8 it follows

Corollary 1.3. Let $f : X \to \mathbb{R}$ be a C^1 functional bounded from below and $(x_j)_j$ be a minimizing sequence. Then there exists another minimizing sequence $(y_j)_j$ such that

$$f(y_j) \leq f(x_j),$$

$$\lim_j ||x_j - y_j|| = 0,$$

$$\lim_j ||f'(y_j)|| = 0.$$

Now, combining with (PS) condition we get

Theorem 1.9. Let $f : X \to \mathbb{R}$ be a C^1-functional bounded below and $c = \inf f$. Assume that f satisfies $(PS)_c$ condition. Then c is achieved at a point $x_0 \in X$ and $f'(x_0) = 0$.

The last theorem has a generalization based on another (PS) condition introduced by G. Cerami [Ce].

Definition 1.5 (Cerami, 1978). Let $c \in \mathbb{R}$. We say that the C^1-functional $f : X \to \mathbb{R}$ satisfies $(PSC)_c$ condition if every sequence $(x_j)_j$ in X such that

$$\lim_j f(x_j) = \text{cand} \lim_j (1 + ||x_j||)||f'(x_j)|| = 0,$$
has a convergent subsequence.

The following minimizing theorem is proved in Ekeland [Ek2], p.139.

Theorem 1.10. Let $f : X \to \mathbb{R}$ be a C^1-functional bounded from below and $c = \inf f$. If $(PSC)_c$ condition is satisfied, then c is minimum of f.

The proof is based on the Ekeland principle applied to the space X equipped by so called geodesic distance. Let $\gamma \in C^1([0,1], X)$ be a curve in X. The geodesic length $l(\gamma)$ of the curve γ is

$$l(\gamma) = \int_0^1 \frac{\|\dot{\gamma}(t)\|}{1 + \|\gamma(t)\|} \, dt. \quad (1.12)$$

If x_1 and x_2 are two points of X, the geodesic distance $\delta(x_1, x_2)$ between x_1 and x_2 is defined as

$$\delta(x_1, x_2) = \inf \left\{ l(\gamma) : \gamma \in C^1([0,1], X), \gamma(0) = x_1, \gamma(1) = x_2 \right\}. \quad (1.13)$$

We have

$$\begin{align*}
\delta(x_1, x_2) &\leq \|x_1 - x_2\|, \\
\delta(0, x) & = \int_0^1 \frac{\|x\|}{1 + t \|x\|} \, dt = \ln (1 + \|x\|).
\end{align*}$$

If x_1 and x_2 belong to a bounded set $B \subset X$, there exists $k > 0$ such that

$$\delta(x_1, x_2) \geq k \|x_1 - x_2\|.$$

Proof of Theorem 1.10. By Corollary 1.2 applied to (X, δ) with $\varepsilon = \frac{1}{j^2}$, we obtain a sequence $(x_j)_j$ such that

$$\inf f \leq f(x_j) \leq \inf f + \frac{1}{j^2}, \quad (1.14)$$

$$f(x) \geq f(x_j) - \frac{1}{j} \delta(x, x_j), \quad \forall x \in X.$$

Taking $x = x_j + th$, $t > 0$, $h \in X$, we have

$$f(x_j + th) - f(x_j) \geq -\frac{1}{j} \delta(x_j, x_j + th).$$

By the properties of the geodesic distance and making a change of variable
Minimization and Mountain-pass Theorems

\[
\frac{1}{t} (f(x_j + th) - f(x_j)) \geq -\frac{\|h\|}{jt} \int_0^t ds (1 + \|x_j + sh\|).
\]

Letting \(t \to 0 \) in last inequality we get

\[
\langle f'(x_j), h \rangle \geq -\frac{1}{j} (1 + \|x_j\|)^{-1} \|h\|,
\]
or

\[
(1 + \|x_j\|) \|f'(x_j)\| \leq \frac{1}{j}. \tag{1.15}
\]

From (1.14), (1.15) and \((PSC)\) condition, it follows that there is a convergent subsequence of \((x_j)\), which we denote in the same way by \((x_j)\), and \(x_0 \in X\) such that \(\lim_j x_j = x_0\), \(f(x_0) = c\) and \(f'(x_0) = 0\). End Proof

1.2.4 Borwein–Preiss Principle and Second-Order Information for Minimizing Sequences

Let \(X\) be a Banach space and \(\mathcal{F}\) be the class of functionals \(\phi : X \to \mathbb{R}\) of the form

\[
\phi(x) = \frac{1}{2} \sum_{n=1}^{\infty} \lambda_n \|x - x_n\|^2,
\]
where \((x_n)_n\) be a convergent sequence in \(X\) and

\[
\lambda_n \geq 0, \sum_{n=1}^{\infty} \lambda_n = 1.
\]

The generalized Borwein–Preiss variational principle is as follows [BP]

Theorem 1.11 (Borwein & Preiss, 1987). Let \(f : X \to \mathbb{R}\) be a lower semicontinuous functional bounded below and \(\varepsilon > 0\). If \(x_0 \in X\) is such that

\[
f(x_0) < \inf_{x \in X} f(x) + \varepsilon, \tag{1.16}
\]

then there exist \(x_\varepsilon \in X\) and \(\phi \in \mathcal{F}\) such that

\[
f(x_\varepsilon) < \inf_{x \in X} f(x) + \varepsilon, \tag{1.17}
\]

\[
\|x_\varepsilon - x_0\| \leq 1, \tag{1.18}
\]

\[
f(x) > f(x_\varepsilon) + 2\varepsilon (\phi(x_\varepsilon) - \phi(x)), \quad x \neq x_\varepsilon. \tag{1.19}
\]
Proof. By (1.16) choose positive numbers \(\varepsilon_1, \varepsilon_2, \mu, \theta \) and \(\delta \) such that

\[
f(x_0) - \inf f < \varepsilon_2 < \varepsilon_1 < \varepsilon, \tag{1.20}
\]

\[
0 < \mu < 1 - \frac{\varepsilon_1}{\varepsilon}, \tag{1.21}
\]

\[
0 < \frac{\theta}{\mu} < \frac{\varepsilon_1}{(\sqrt{\varepsilon_1} + \sqrt{\mu \varepsilon_2})^2} < 1, \tag{1.22}
\]

\[
\delta = (1 - \mu) \varepsilon.
\]

We iteratively construct \(\phi \in \mathcal{F} \) as follows. Let \(f_0 := f \),

\[
f_1(x) := f_0(x) + \delta \|x - x_0\|^2,
\]

and recursively

\[
f_{n+1}(x) := f_n(x) + \delta \mu^n \|x - x_n\|^2, \tag{1.23}
\]

where \(x_{n+1} \) is chosen so that

\[
f_{n+1}(x_{n+1}) \leq \theta f_n(x_n) + (1 - \theta) \inf f_n. \tag{1.24}
\]

Denote

\[
s_{n+1} := \inf f_n, \quad a_n := f_n(x_n).
\]

From (1.24) we have

\[
s_n \leq s_{n+1} \leq a_{n+1} \leq \theta a_n + (1 - \theta) s_{n+1} \leq a_n
\]

and then

\[
a_{n+1} - s_{n+1} \leq \theta (a_n - s_n) \leq \theta^{n+1} (a_0 - s_0). \tag{1.25}
\]

Replacing \(x = x_{n+1} \) in (1.23)

\[
a_{n+1} = f_n(x_{n+1}) + \delta \mu^n \|x_{n+1} - x_n\|^2 \\
\geq s_{n+1} + \delta \mu^n \|x_{n+1} - x_n\|^2
\]

which from (1.20) and (1.25) implies
\[\delta \mu^n \|x_{n+1} - x_n\|^2 \leq \theta^{n+1} (a_0 - s_0) \leq \theta^{n+1} \varepsilon_2.\]

From (1.22) it follows that \((x_n)_n\) is a Cauchy sequence because for \(m > n\) we have

\[
\|x_m - x_n\| \leq \|x_{n+1} - x_n\| + \ldots + \|x_m - x_{m-1}\| \\
\leq \left(\frac{\theta}{\mu}\right)^{\frac{1}{2}} \left(\frac{\theta \varepsilon_2}{\delta}\right)^{\frac{1}{2}} + \ldots + \left(\frac{\theta}{\mu}\right)^{\frac{m-1}{2}} \left(\frac{\theta \varepsilon_2}{\delta}\right)^{\frac{1}{2}} \\
= \left(\frac{\theta \varepsilon_2}{\delta}\right)^{\frac{1}{2}} \left(\frac{\theta}{\mu}\right)^{\frac{n}{2}} \frac{1 - \left(\frac{\theta}{\mu}\right)^{\frac{m-n}{2}}}{1 - \left(\frac{\theta}{\mu}\right)^{\frac{1}{2}}} \\
< \left(\frac{\theta \varepsilon_2}{\delta}\right)^{\frac{1}{2}} \frac{1}{1 - \left(\frac{\theta}{\mu}\right)^{\frac{1}{2}}} < \left(\frac{\varepsilon_1}{\delta}\right)^{\frac{1}{2}}.
\]

Then

\[
\|x_m - x_n\| < \left(\frac{\varepsilon_1}{\delta}\right)^{\frac{1}{2}} < 1, \quad (1.26)
\]

since by (1.21)

\[
\frac{\varepsilon_1}{\delta} = \frac{\varepsilon_1}{\varepsilon (1 - \mu)} < \frac{\varepsilon_1}{\varepsilon} = 1.
\]

Let \(x_\varepsilon\) be the limit of the sequence \((x_n)_n\) and

\[
\phi (x) = \frac{1}{2} \sum \mu^n (1 - \mu) \|x - x_n\|^2.
\]

Letting \(m \to \infty\) in (1.26) we obtain

\[
\|x_n - x_\varepsilon\| \leq 1.
\]

By (1.25) and the lower semicontinuity of \(f_n\) we have

\[
f(x) + 2 \varepsilon \phi (x) = \sup f_n (x) \geq \lim_{n} s_n \\
= \lim_{n} f_n (x_n) \geq \sup \liminf f_m (x_n) \\
\geq \sup m f_m (x_\varepsilon) = f(x_\varepsilon) + 2 \varepsilon \phi (x_\varepsilon)
\]
which completes the proof.

End Proof

In the case of Hilbert spaces the class \mathcal{F} in Theorem 1.11 reduces to

$$\mathcal{F}_0 = \left\{ \phi \in \mathcal{F} : \phi(x) = \frac{1}{2} \|x - x_0\|^2 \right\}.$$

The inequality (1.19) takes the form

$$f(x) > f(x_\epsilon) + \epsilon \left(\|x_\epsilon - x_0\|^2 - \|x - x_0\|^2 \right), \quad \forall x \in X. \quad (1.27)$$

If f is a C^2 functional then

$$\frac{1}{t^2} \left(f(x + th) + f(x - th) - 2f(x) \right) \to \langle f''(x) h, h \rangle, \quad (1.28)$$

as $t \to 0$. Writing (1.27) with x replaced by $x_\epsilon + th$ and $x_\epsilon - th$ and adding both inequalities, we obtain

$$f(x_\epsilon + th) + f(x_\epsilon - th) - 2f(x_\epsilon) \geq -2\epsilon t^2 \|h\|^2.$$

Dividing by t^2, letting $t \to 0$ and using (1.28) we have

$$< f''(x_\epsilon) h, h > \geq -2\epsilon \|h\|^2, \quad \forall h \in X,$$

that is,

$$f''(x_\epsilon) \geq -2\epsilon I.$$

We obtain as a consequence of Theorem 1.11 a second order information about minimizing sequences for functionals in Hilbert spaces (see Fang & Ghoussoub [FG]).

Corollary 1.4 (Fang & Ghoussoub, 1992). *Let X be a Hilbert space, $f : X \to \mathbb{R}$, be of class C^2 and bounded below. Then there exists a sequence $(x_j)_j$ such that*

$$\lim_j f(x_j) = \inf f, \quad \lim_j \|f'(x_j)\| = 0,$$

$$\lim_j \langle f''(x_j) h, h \rangle \geq 0, \quad \forall h \in X.$$
1.3 Deformation Theorems and Palais–Smale Conditions

The original approach to prove the mountain-pass theorem of Ambrosetti & Rabinowitz [ARa] is based on the Deformation lemma, variants of which we consider in this section.

Let $f \in C^1(X, \mathbb{R})$ be a functional defined on the open subset X in the Banach space E. We introduce the following notations

\[K = \{ x \in E : f'(x) = 0 \}, \quad K_c = \{ x \in K(f) : f(x) = c \}, \]
\[f^- = \{ x \in E : f(x) \leq c \}, \quad f_c = \{ x \in E : f(x) \geq c \}, \]
\[f_{a}^{b} = \{ x \in E : a \leq f(x) \leq b \} = f_a \cap f_b, \]
\[B_\rho = \{ x \in E : ||x|| \leq \rho \}, \quad S_\rho = \{ x \in E : ||x|| = \rho \}. \]

and

\[d(x, F) = \inf \{ ||x - y||, y \in F \}, \quad F_\delta = \{ x \in E : d(x, F) < \delta \}, \]

where F is a closed set in E.

A continuous mapping $\eta(t, x) : [0, 1] \times X \to X$ is said to be a homotopy of homeomorphisms if for all $t \in [0, 1]$

1. $\eta(t, x) : X \to X$ is a homeomorphism,
2. $\eta(0, x) = x$, for all $x \in X$.

The following theorem is proved by P.Rabinowitz [Ra2], Theorem A.4.

Theorem 1.12 (Rabinowitz, 1986). Let $f \in C^1(E, \mathbb{R})$ and satisfy (PS) condition. For any $c \in \mathbb{R}$, $\varepsilon_0 > 0$ and any neighborhood N of K_c there exist $\varepsilon \in (0, \varepsilon_0)$ and $\eta \in C([0, 1] \times E, E)$ such that

1. $\eta(0, x) = x$, for all $x \in E$.
2. $\eta(t, x) = x$ for all $t \in [0, 1]$ if $|f(x) - c| \geq \varepsilon_0$.
3. $\eta(1, f^{c+\varepsilon} \setminus N) \subset f^{c-\varepsilon}$.
4. if $K_c = \emptyset$ then $\eta(1, f^{c+\varepsilon}) \subset f^{c-\varepsilon}$.
5. if f is even, $\eta(t, x)$ is odd in x for all $t \in [0, 1]$.

The proof of Theorem 1.12 is based on the pseudo-gradient vector field due to Palais [Pal].

Definition 1.6 (Palais, 1970). Let $X \subset E$ be an open subset, $f \in C^1(X, \mathbb{R})$ and $0 < \alpha < \beta$ be given. A pseudo-gradient vector field for f on $X \setminus K$ is a locally Lipschitz continuous mapping $V : X \setminus K \to E$ such that

1. $\|V(x)\| \leq \beta \|f'(x)\|$,
2. $\alpha \|f'(x)\|^2 \leq \langle f'(x), V(x) \rangle$.

We have

Lemma 1.1. Under the assumptions of Definition 1.6, there exists a pseudo-gradient vector field for f on $X \setminus K$.

In the case $\alpha = 1$, $\beta = 2$, Lemma 1.1 is proved in Rabinowitz [Ra2], Willem [Wil1]. In [Ra2], Appendix A is given the idea for general α and β. Further comments on pseudo-gradient vector fields are given in Ramos [Ram].

Proof of Lemma 1.1. Since $\frac{2\alpha}{\alpha + \beta} < 1$, if $x \in X \setminus K$ and by the definition of norm in E^*, there exists $w_x \in E$, $\|w_x\| = 1$ such that

$$\langle f'(x), w_x \rangle > \frac{2\alpha}{\alpha + \beta} \|f'(x)\|.$$

Let $V_x := \frac{\alpha + \beta}{2} \|f'(x)\| w_x$. Then

$$\|V_x\| < \beta \|f'(x)\|,$$

$$\langle f'(x), V_x \rangle > \alpha \|f'(x)\|^2.$$

Since f' is continuous there exists an open neighborhood U_x of x such that for every $y \in U_x$

$$\|V_x\| \leq \beta \|f'(y)\|,$$

$$\langle f'(y), V_x \rangle \geq \alpha \|f'(x)\|^2.$$ (1.29) (1.30)

The family $\{U_x : x \in X \setminus K\}$ is an open covering of $X \setminus K$ and let $\{W_i\}$ be a locally finite refinement of $\{U_x\}$ and $\rho_i(x) = d(x, X \setminus W_i)$. For each i, let x_i be such that $W_i \subset U_{x_i}$ and put $V_i = V_{x_i}$. The function $\rho_i(x)$ is Lipschitz continuous and $\rho_i(x) = 0$ if $x \notin W_i$. The sum $\sum \rho_i(x)$ is locally finite and $\sum \rho_i(x) > 0$ for all $x \in X \setminus K$. Define for $x \in X \setminus K$

$$V(x) := \frac{1}{\sum \rho_i(x)} \sum \rho_i(x) V_i.$$

The mapping $V : X \setminus K \rightarrow E$ is a locally Lipschitz continuous and since $V(x)$ is a convex combination of vectors satisfying (1.29) and (1.30) we have
Minimization and Mountain-pass Theorems

\[\|V(x)\| \leq \frac{1}{\sum_i \rho_i(x)} \sum_i \rho_i(x) \|V_i\| \leq \beta \|f'(x)\| \]

and

\[\left\langle f'(x), V(x) \right\rangle = \frac{1}{\sum_i \rho_i(x)} \sum_i \rho_i(x) \left\langle f'(x), V_i(x) \right\rangle \geq \alpha \left\|f'(x)\right\|^2. \]

End Proof

Corollary 1.5. Given \(0 < \alpha < \beta \) there exist locally Lipschitz mappings \(V_j : X \setminus K \to E, j = 1, 2 \) such that for all \(x \in X \setminus K \)
1. \(\|V_1(x)\| \leq \beta \) and \(\alpha \left\|f'(x)\right\| \leq \left\langle f'(x), V_1(x) \right\rangle \),
2. \(\alpha \leq \left\langle f'(x), V_2(x) \right\rangle \leq \left\|f'(x)\right\| \|V_2(x)\| \leq \beta. \)

Proof. Let \(x \in X \setminus K \) and \(w_x \in E, \|w_x\| = 1 \) be such that

\[\left\langle f'(x), w_x \right\rangle > \frac{2\alpha}{\alpha + \beta} \left\|f'(x)\right\|. \]

Let \(V_{1,x} := \frac{\alpha + \beta}{2} w_x \) and \(V_{2,x} := \frac{\alpha + \beta}{2\|f'(x)\|} w_x. \) Then we have

\[\alpha \left\|f'(x)\right\| < \left\langle f'(x), V_{1,x} \right\rangle, \quad \|V_{1,x}\| < \beta, \]
\[\alpha < \left\langle f'(x), V_{2,x} \right\rangle \leq \left\|f'(x)\right\| \|V_{2,x}\| < \beta. \]

Since \(f' \) is continuous, there exists an open neighborhood \(U_x \) of \(x \) such that for \(y \in U_x \)

\[\alpha \left\|f'(x)\right\| < \left\langle f'(y), V_{1,x} \right\rangle, \]
\[\alpha < \left\langle f'(y), V_{2,x} \right\rangle \leq \left\|f'(y)\right\| \|V_{2,x}\| < \beta. \]

The proof can be completed by following the proof of Lemma 1.1. End Proof

We say that a homotopy of homeomorphisms \(\eta(t,x) : [0,1] \times X \to X \) is \(f \)-decreasing (\(f \)-increasing) if whenever \(0 \leq t_1 \leq t_2 \leq 1 \) then

\[f(\eta(t_1,x)) \geq f(\eta(t_2,x)), \quad (f(\eta(t_1,x)) \leq f(\eta(t_2,x))) \quad \forall x \in X. \]

Theorem 1.12 was generalized by M. Willem [Wil1], [Wil2], Bartolo, Benci & Fortunato [BBF], Chang [Ch3], Brezis & Nirenberg [BN] in various directions.
Theorem 1.13. Let \(f \in C^1(X, \mathbb{R}) \) and \(F \) and \(G \) be closed disjoint subsets of \(X \). Let \(c \in \mathbb{R}, \varepsilon \) and \(\delta > 0 \) be numbers such that \(F_{2\delta} \cap G = \emptyset \) and

\[
x \in f^{-1}[c-\varepsilon, c+\varepsilon] \cap F_{2\delta} \Rightarrow \|f'(x)\| \geq \frac{4\varepsilon}{\delta}.
\]

Then there exists a \(f \)-decreasing homotopy of homeomorphisms \(\eta : [0,1] \times X \to X \) such that:

1. \(\eta(t,x) = x \) if either \(x \in G \) or \(|f(x) - c| \geq 2\varepsilon \),
2. \(\eta(1, f^{-1}[c-\varepsilon, c+\varepsilon] \cap F_{2\delta}) \subset f^{-1}[c-\varepsilon, c+\varepsilon] \cap F_{2\delta} \),
3. \(\|\eta(t,x) - x\| \leq 2\delta t \).

Proof. Consider the sets

\[
A := \{x : |f(x) - c| \geq 2\varepsilon\} \cup \left\{x : \|f'(x)\| \leq \frac{2\varepsilon}{\delta}\right\} \cup G,
\]

\[
B := f^{-1}[c-\varepsilon, c+\varepsilon] \cap F_{2\delta},
\]

and define the function

\[
\chi(x) := \frac{d(x, A)}{d(x, A) + d(x, B)}.
\]

Let \(V : X \setminus K \to E \) be a locally Lipschitz mapping, satisfying Corollary 1.5 (2), with \(\alpha = 1, \beta = 2 \) and let

\[
g(x) := \chi(x) V(x).
\]

Consider the Cauchy problem

\[
\begin{cases}
\dot{\sigma}(t) = -g(\sigma(t)), \\
\sigma(0) = x,
\end{cases}
\]

for every \(x \in X \). We have \(g(x) = 0 \) if \(x \in A \). If \(x \notin A \) and \(x \in X \setminus K \), then

\[
\|g(x)\| \leq \|V(x)\| \leq \frac{2}{\|f'(x)\|} \leq \frac{\delta}{\varepsilon}.
\]

By the fundamental existence-uniqueness theorem for ordinary differential equations in Banach spaces (see Cartan [Car], Ramos [Ram]), the problem (1.31) has a unique solution \(\sigma(.,x) : \mathbb{R}^+ \times X \to E \) and \(\sigma(t,.) : X \to X \) is a homeomorphism.
The homotopy $\sigma(t, x)$ is f-decreasing because
\[\frac{d}{dt} f(\sigma(t, x)) = \langle f'(\sigma(t, x)), \dot{\sigma}(t, x) \rangle \]
\[= -\chi(\sigma(t, x)) \langle f'(\sigma(t, x)), V(\sigma(t, x)) \rangle \]
\[\leq -\chi(\sigma(t, x)) \leq 0. \]

Let $\eta(t, x) = \sigma(2\varepsilon t, x)$. Since $\chi(x) = 0$ if $x \in A$, then $\eta(t, x) = x$ if $x \in G$ or $|f(x) - c| \geq 2\varepsilon$, so (1) is proved. We get (3) by (1.32)
\[\| \eta(t, x) - x \| = \| \sigma(2\varepsilon t, x) - \sigma(0, x) \| \]
\[\leq \int_0^{2\varepsilon t} \| \dot{\sigma}(s) \| \, ds = \int_0^{2\varepsilon t} \| g(\sigma(s)) \| \, ds \]
\[\leq \frac{\delta}{\varepsilon} 2\varepsilon t = 2\delta t. \]

Let us prove (2). From (3) it follows that $\eta(t, F) \subset F_{2\delta}$ for all $t \in [0, 1]$. Let $x \in f_{c+\varepsilon} \cap F$. If there exists $t_0 \in [0, 1]$ such that $f(\sigma(2\varepsilon t_0, x)) \leq c - \varepsilon$, then
\[f(\sigma(2\varepsilon, x)) \leq f(\sigma(2\varepsilon t_0, x)) \leq c - \varepsilon \]
and the assertion follows.
If $f(\sigma(2\varepsilon t, x)) > c - \varepsilon$ for every $t \in [0, 1]$, since
\[c + \varepsilon \geq f(x) = f(\sigma(0, x)) \geq f(\sigma(2\varepsilon, x)) > c - \varepsilon, \]
we have $\sigma(2\varepsilon, x) \in f^{-1}[c - \varepsilon, c + \varepsilon] \cap F_{2\delta} = B$. Then by Corollary 1.5 (2)
\[f(\sigma(2\varepsilon, x)) - f(x) = \int_0^{2\varepsilon} \frac{d}{ds} f(\sigma(s, x)) \, ds \]
\[= \int_0^{2\varepsilon} \langle f'(\sigma(s, x)), \dot{\sigma}(s, x) \rangle \, ds \]
\[= -\int_0^{2\varepsilon} \langle f'(\sigma(s, x)), V(\sigma(s, x)) \rangle \, ds \]
\[\leq -2\varepsilon \]
and so
\[c - \varepsilon < f(\sigma(2\varepsilon, x)) \leq f(x) - 2\varepsilon \leq c + \varepsilon - 2\varepsilon = c - \varepsilon, \]
which is a contradiction. End Proof
Corollary 1.6. Let \(f \) satisfy \((PS)_c\) condition and \(N = K_{c,\delta} \) be a neighborhood of \(K_c \). Then there exist \(\varepsilon > 0 \) and a \(f \)-decreasing homotopy of homeomorphisms \(\eta(t,x) : [0,1] \times X \to X \) such that

1. \(\eta(t,x) = x \) if \(x \in K_c \) or \(|f(x) - c| \geq 2\varepsilon \),
2. \(\eta(1, f^{c+\varepsilon} \setminus N) \subset f^{c-\varepsilon} \),
3. \(\|\eta(t,x) - x\| \leq 2\delta t \).

Proof. There exist \(\varepsilon_0 > 0 \) and \(\beta > 0 \) such that

\[
|f(x) - c| \leq \varepsilon_0, \quad d(x, K_c) \geq 2\delta \implies \|f'(x)\| \geq \beta.
\]

Otherwise, there exists a sequence \((x_j)\) such that

\[
|f(x_j) - c| \leq \frac{1}{j}, \quad d(x_j, K_c) \geq 2\delta, \quad \|f'(x_j)\| < \frac{1}{j}.
\]

By \((PS)_c\) condition there exists a subsequence of \((x_j)\), which we denote again by \((x_j)\) such that \(\lim_j x_j = x_0 \), \(f(x_0) = c \) and \(f'(x_0) = 0 \) which contradicts to \(d(x_0, K_c) \geq 2\delta \).

Let \(0 < \varepsilon < \min(\varepsilon_0, \beta\delta/4) \). Then

\[
|f(x) - c| \leq \varepsilon, \quad d(x, K_c) \geq 2\delta \implies \|f'(x)\| \geq \frac{4\varepsilon}{\delta}.
\]

The assertion follows from Theorem 1.13 taking \(G = K_c \) and \(F = X \setminus K_{c,\delta} \).

End Proof.

Corollary 1.7. Let \(f \) satisfies \((PS)_c\) condition and \(K_c = \emptyset \). Then there exist \(\varepsilon > 0 \) and a \(f \)-decreasing homotopy of homeomorphisms \(\eta : [0,1] \times X \to X \) such that:

1. \(\eta(t,x) = x \) if \(|f(x) - c| \geq 2\varepsilon \),
2. \(\eta(1, f^{c+\varepsilon} \setminus N) \subset f^{c-\varepsilon} \).

Proof. By \((PS)_c\) condition there exist \(\varepsilon_0, \beta > 0 \) such that

\[
|f(x) - c| \leq \varepsilon_0 \implies \|f'(x)\| \geq \beta.
\]

Otherwise, there exists a sequence \((x_j)\) such that

\[
|f(x_j) - c| \leq \frac{1}{j} \quad \text{and} \quad \|f'(x_j)\| \leq \frac{1}{j}.
\]

By \((PS)_c\) condition it follows that \(c \) is a critical value, which contradicts to \(K_c = \emptyset \). Let \(\delta > 0 \) and \(\varepsilon \in (0, \min(\varepsilon_0, \beta\delta/4)) \). The assertion follows from Theorem 1.13 taking \(G = \emptyset \) and \(F = X \).

End Proof.
We introduce another (PS) type condition which generalizes (PSC)_c condition.

Let \(\Phi \) be the set of positive increasing functions \(\varphi(s) : \mathbb{R}^+ \to \mathbb{R}^+ \), \(\varphi(0) > 0 \) such that \(\varphi(s) = O(|s|) \) as \(|s| \to \infty \), i.e. there are \(C > 0, R > 0 \) such that
\[
\varphi(s) \leq Cs \quad \text{if} \quad s \geq R.
\]

Definition 1.7. Let \(\varphi \in \Phi \) and \(c \in \mathbb{R} \). The \(C^1 \) functional \(f \) satisfies (PS)_{c, \varphi} condition for a given \(\varphi \in \Phi \) if every sequence \((x_j) \) such that
\[
\lim_j f(x_j) = c \quad \text{and} \quad \lim_j \varphi(\|x_j\|) \left\| f'(x_j) \right\| = 0,
\]
has a convergent subsequence.

If \(\varphi(s) = 1 + s, s \geq 0 \), we are in the case of (PSC)_c condition.

Next theorem extends a result of Ramos [Ram], Theorem 2.12.

Theorem 1.14. Suppose that \(f \in C^1(X, \mathbb{R}) \) satisfies (PS)_{c, \varphi} condition for a given \(c \in \mathbb{R} \) and \(\varphi \in \Phi \). Let \(N = K_{c, \delta} \) be a neighborhood of \(K_c \).

Then there exist \(\varepsilon > 0 \) and a \(f \)-decreasing homotopy of homeomorphisms \(\eta : [0,1] \times X \to X \) such that:
1. \(\eta(t, x) = x \) if \(x \in K_c \) or \(|f(x) - c| \geq 2\varepsilon \),
2. \(\eta(1, f^{-c+\varepsilon} \setminus N) \subset f^{-c-\varepsilon} \).

Proof. The set \(N \) is bounded because \(K_c(f) \) is compact by (PS)_{c, \varphi} condition. Let \(R_0 \) be such that \(N \subset B_{R_0} \). There exist numbers \(\varepsilon_0 > 0, R > R_0, c_0 > 0 \) and \(\beta > 0 \) such that if
\[
|f(x) - c| \leq 2\varepsilon_0, \quad \|x\| \geq R,
\]
then
\[
\left\| f'(x) \right\| \geq \frac{\beta}{\varphi(\|x\|)} \geq \frac{\beta c_0}{\|x\|}.
\]

(1.33)

Otherwise, for every \(j > 0 \) there exists \(x_j \) such that
\[
|f(x_j) - c| \leq \frac{1}{j}, \quad \|x_j\| \geq j, \quad \varphi(\|x_j\|) \left\| f'(x_j) \right\| < \frac{1}{j}.
\]

By (PS)_{c, \varphi} condition \((x_j)_j \) has a convergent subsequence, which is a contradiction to \(\lim_j \|x_j\| = \infty \). Moreover, there exists \(\varepsilon_1 < \varepsilon_0 \) such that if
\[
|f(x) - c| \leq 2\varepsilon_1, \quad \|x\| \leq R, \quad d(x, K_c) \geq \delta,
\]
then
\[\|f'(x)\| \geq \frac{4\varepsilon_1}{\delta}. \] (1.34)

In fact, assuming the contrary, there exists a sequence \((x_j)_j\) such that
\[|f(x_j) - c| \leq \frac{1}{j}, \quad \|x_j\| \leq R, \]
\[d(x_j, K_c) \geq \delta \quad \text{and} \quad \|f'(x_j)\| < \frac{1}{j}. \]

Since \(\varphi\) is increasing, \(\varphi (\|x_j\|) \leq \varphi (R).\) So
\[\varphi (\|x_j\|) \|f'(x_j)\| \leq \varphi (R) \|f'(x_j)\| < \frac{\varphi (R)}{j}, \]
and it follows that
\[\lim_j \varphi (\|x_j\|) \|f'(x_j)\| = 0. \]

Therefore, by \((PS)_{c, \varphi}\) condition, \((x_j)_j\) has a convergent subsequence which we still denote by \((x_j)_j\). Then \(\lim_j x_j = x_0, \quad f'(x_0) = 0\) and \(f(x_0) = c\), which contradicts to \(d(x, K_c) \geq \delta\).

Let \(0 < \varepsilon < \varepsilon_1\). As in the proof of Theorem 1.13 we define
\[
A = \{ x : |f(x) - c| \geq 2\varepsilon \} \cup \{ x : d(x, K_c) \leq \delta \} \cup K, \\
B = f^{-1}[c - \varepsilon, c + \varepsilon] \cap \{ x : d(x, K_c) \geq 2\delta \},
\]
and
\[\chi(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}. \]

Let \(\alpha = 1, \beta = 2\) and consider a locally Lipschitz mapping \(V : X \setminus K \to E\), according to Corollary 1.5, (2). Define \(g(x) = \chi(x) V(x)\). We have \(g(x) = 0\) if \(x \in A\) and if \(x \notin A\), by (1.33) and (1.34),
\[\|g(x)\| \leq \|V(x)\| \leq \frac{2}{\|f'(x)\|} \leq \frac{\delta}{2\varepsilon} + \frac{2}{\beta c_0} \|x\|. \quad (1.35) \]

By (1.35) for every \(x \in X\), the Cauchy problem
\[
\begin{align*}
\dot{\sigma}(t) &= -g(\sigma(t)), \\
\sigma(0) &= x.
\end{align*}
\]
has a unique solution $\sigma(., x) : \mathbb{R}^+ \to E$.

Let $\eta(t, x) = \sigma(2\varepsilon t, x), 0 \leq t \leq 1$. Since $\chi(x) = 0$ if $x \in A$ the assertion (1) of theorem is satisfied.

Let us prove (2), which means that for every x such that

$$f(x) \leq c + \varepsilon, \quad d(x, K_c) \geq 4\delta,$$

we have

$$f(\eta(1, x)) \leq c - \varepsilon.$$

By contradiction, assume there exists y such that

$$f(y) \leq c + \varepsilon, \quad d(y, K_c) \geq 4\delta, \quad f(\eta(1, y)) > c - \varepsilon.$$

Then $f(y) = f(\eta(0, y)) \geq f(\eta(1, y)) > c - \varepsilon$ and $y \in B$. However $\sigma(2\varepsilon t, y)$ cannot stay in B for every $t \in [0, 1]$. Otherwise $d(\sigma(2\varepsilon t, y), K_c) \geq 2\delta$ for all $t \in [0, 1]$ and

$$c - \varepsilon < f(\sigma(2\varepsilon, y)) \leq f(y) - \int_0^{2\varepsilon} \left\langle f'(\sigma(s)), V(\sigma(s)) \right\rangle ds \leq c + \varepsilon - 2\varepsilon = c - \varepsilon,$$

which is a contradiction.

Since

$$c + \varepsilon \geq f(y) \geq f(\sigma(2\varepsilon t, y)) \geq f(\sigma(2\varepsilon, y)) > c - \varepsilon,$$

there exist $0 \leq t_1 \leq t_2 \leq 1$ such that

$$d(\sigma(2\varepsilon t_1, y), K_c) = 4\delta \geq d(\sigma(2\varepsilon t, y), K_c) \geq 2\delta = d(\sigma(2\varepsilon t_2, y), K_c)$$

for every $t \in [t_1, t_2]$. We have $\sigma(2\varepsilon [t_1, t_2], y) \subset B \cap B_R$. Therefore, by Corollary 1.5, (2) and (1.34), we have

$$2\delta \leq \|\sigma(2\varepsilon t_2) - \sigma(2\varepsilon t_1)\| \leq \int_{2\varepsilon t_1}^{2\varepsilon t_2} ||\dot{\sigma}(s)|| ds \leq \int_{2\varepsilon t_1}^{2\varepsilon t_2} ||V(\sigma(s))|| ds$$
\[
\int_{2t_1}^{2t_2} \frac{2ds}{\|f'(\sigma(s))\|} \leq 2\varepsilon (t_2 - t_1) \frac{2\delta}{4\varepsilon_1} \leq 4\varepsilon \frac{\delta}{4\varepsilon_1} \leq \delta,
\]

which is a contradiction. Therefore (2) is satisfied and the Theorem is proved. End Proof.

Another \((PS)\) type condition has been introduced by M. Schechter [Sch1], [Sch2].

Let \(\Psi\) be the set of positive non-increasing functions \(\psi(s) : \mathbb{R}^+ \to \mathbb{R}^+\) such that

\[
\int_{1}^{\infty} \psi(s) \, ds = \infty.
\]

Definition 1.8 (Schechter, 1991). Let \(c \in \mathbb{R}\) and \(\psi \in \Psi\). The \(C^1\) functional \(f\) satisfies \((PS)_{c,\psi}\) if every sequence \((x_j)_j \subset X\) such that

\[
\lim_j f(x_j) = c \quad \text{and} \quad \lim_j \frac{\|f'(x_j)\|}{\psi(\|x_j\|)} = 0,
\]

has a convergent subsequence in \(X\).

If \(\psi\) is a constant we have the usual \((PS)_c\) condition, if \(\psi(s) = \frac{1}{1+s}\) we are in the case of Cerami \((PSC)_c\) condition. If \(\phi \in \Phi\), then \(\frac{1}{\phi} \in \Psi\).

Theorem 1.15. Let \(f\) satisfy \((PS)_{c,\psi}\) condition for some \(\psi \in \Psi\) and \(c \in \mathbb{R}\) be such that \(K_c = \emptyset\). Take \(M > 0\). Then there exist \(\varepsilon > 0\) and a \(f\)-increasing homotopy of homeomorphisms \(\eta : [0,1] \times X \to X\) such that

1. \(\eta(t,x) = x\) if \(|f(x) - c| \leq 2\varepsilon\) for \(t \in [0,1]\)
2. \(\eta(1,f_{c-\varepsilon} \cap B_M) \subset f_{c+\varepsilon}\).

Proof. There exist \(\varepsilon_0 > 0, \beta > 0\) such that

\[
|f(x) - c| \leq \varepsilon_0 \Rightarrow \|f'(x)\| \geq \beta \psi(\|x\|).
\]

Otherwise, there exists a sequence \((x_j)_j\) such that

\[
|f(x_j) - c| \leq \frac{1}{j}, \quad \|f'(x_j)\| \leq \frac{1}{j} \psi(\|x_j\|).
\]

By \((PS)_{c,\psi}\) condition \(\lim_j x_j = x_0\) and so \(f(x_0) = c, f'(x_0) = 0\), which is a contradiction to \(K_c = \emptyset\).
Let $\varepsilon < \min\{\varepsilon_0, \beta\}$. Then

$$|f(x) - c| \leq \varepsilon \Rightarrow \left\|f'(x)\right\| \geq \varepsilon \psi(\|x\|).$$

Let $T > 0$ be such that

$$4 < \int_M^{M + 2T} \psi(s)\, ds$$

and

\[
A = \{x : |f(x) - c| \geq 2\varepsilon\} \cup K, \\
B = \{x : |f(x) - c| \leq \varepsilon\}, \\
\chi(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}.
\]

By Corollary 1.5, consider $V : X \setminus K \to E$, a locally Lipschitz mapping such that

$$\left\|f'(x)\right\| \leq \left\langle f'(x), V(x)\right\rangle, \quad \|V(x)\| \leq 2.$$ Let $g(x) = \chi(x) V(x)$ and $\sigma(t, x)$ be the solution of Cauchy problem

\[
\begin{cases}
\dot{\sigma}(t) = g(\sigma(t)), \\
\sigma(0) = x.
\end{cases}
\]

Since $\|g(u)\| \leq 2$ the solution $\sigma(t, x)$ of the above problem is defined for every $t \in \mathbb{R}^+$. We have

$$\|\sigma(t, x) - x\| \leq \int_0^t \|\dot{\sigma}(s)\|\, ds \leq \int_0^t \|V(\sigma(s))\|\, ds \leq 2t,$$

and

$$\frac{d}{dt} f(\sigma(t, x)) = \left\langle f'(\sigma(t, x)), \chi(\sigma(t, x)) V(\sigma(t, x))\right\rangle$$

$$= \chi(\sigma(t, x)) \left\langle f'(\sigma(t, x)), V(\sigma(t, x))\right\rangle \geq 0.$$

Therefore, for each $x \in X \setminus K$, the mapping $t \to \sigma(t, x)$ is f-increasing.

Moreover $\sigma(t, x) = x$ if $|f(x) - c| \geq 2\varepsilon$, because $\chi|_A = 0$. Then (1) is proved.

Suppose that there exists y with $\|y\| \leq M$ and $f(y) \geq c - \varepsilon$, such that for every $t \in [0, T]$, $f(\sigma(t, y)) < c + \varepsilon$.

Then $\sigma(t, y) \in B$ for $t \in [0, T]$ and
Minimax Theorems

\[f(\sigma(T, y)) - f(y) = \int_0^T \frac{d}{ds} f(\sigma(s, y)) \, ds \]
\[= \int_0^T \left(f'(\sigma(s, y)), \dot{\sigma}(s, y) \right) \, ds \]
\[= \int_0^T \left(f'(\sigma(s, y)), V(\sigma(s, y)) \right) \, ds \]
\[\geq \int_0^T \left\| f'(\sigma(s, y)) \right\| \, ds \]
\[\geq \varepsilon \int_0^T \psi(\|\sigma(s, y)\|) \, ds \]
\[\geq \varepsilon \int_0^T \psi(\|y\| + 2s) \, ds \]
\[\geq \varepsilon \int_0^T \psi(M + 2s) \, ds = \frac{\varepsilon}{2} \int_M^{M+2T} \psi(s) \, ds \]
\[> 2\varepsilon. \]

So, we have

\[c + \varepsilon > f(\sigma(T, y)) > f(y) + 2\varepsilon \geq c - \varepsilon + 2\varepsilon = c + \varepsilon, \]

which is a contradiction.

Therefore, for every \(x \) satisfying \(\|x\| \leq M \) and \(f(x) \geq c - \varepsilon \), there exists \(t_1 \in [0, T] \) such that \(f(\sigma(t_1, x)) \geq c + \varepsilon \). Then

\[f(\sigma(T, x)) \geq f(\sigma(t_1, x)) \geq c + \varepsilon \]

and we can take \(\eta(t, x) = \sigma(Tt, x), 0 \leq t \leq 1 \), which completes the proof. End Proof.

In an analogous way, we can prove the following variant result

Theorem 1.15’. Let \(f \) satisfies \((PS)_{c, \psi}\) condition for some \(\psi \in \Psi \) and \(c \in \mathbb{R} \) such that \(K_c = \emptyset \). Take \(M > 0 \). Then there exist \(\varepsilon > 0 \) and a \(f \)-decreasing homotopy of homeomorphisms \(\eta : [0, 1] \times X \rightarrow X \) such that

1. \(\eta(t, x) = x \) if \(|f(x) - c| \geq 2\varepsilon \) for \(t \in [0, 1] \)
2. \(\eta(1, f^{c+\varepsilon} \cap B_M(0)) \subset f^{c-\varepsilon} \).

Finally we consider a \((PS)\) condition in scales of Banach spaces, introduced by Struwe [St1], [St2], cf. also Silva [EAS], Li & Willem [LW].

Let \(E \) be a Banach space and

\[E_1 \subset E_2 \subset \ldots \subset E_n \subset \ldots \subset E \]
be a scale of Banach spaces such that $\bigcup_{n=1}^{\infty} E_n$ is dense in E and
\[
\|u\|_{n+1} \leq \|u\|_n, \quad \forall u \in E_n,
\]
where $\|\cdot\|_n$ denotes the norm in E_n.

Let $f : E \to \mathbb{R}$ be a functional, such that $f_n \in C^1(E_n, \mathbb{R})$ for every n where $f_n = f|_{E_n}$.

Note that $\cdots \to E_{n+1}^* \overset{r_n}{\longrightarrow} E_n^* \to \cdots \to E_2^* \overset{i_1}{\longrightarrow} E_1^*$,

where $r_n : E_{n+1}^* \to E_n^*$ is the restriction defined by
\[
\langle r_n(p), x \rangle_n = \langle p, i_n x \rangle_{n+1}, \quad \forall p \in E_{n+1}^*,
\]
where $\langle \cdot, \cdot \rangle_n$ is the pairing between E_n^* and E_n and $i_n : E_n \to E_{n+1}$ is the inclusion mapping. We have
\[
\|r_n p\|_n \leq \|p\|_{n+1}
\]
if $p \in E_{n+1}^*$. Moreover, if $n \geq n_0$ and if u and $v \in E_{n_0}$ we have
\[
\langle f'_{n_0}(u), v \rangle_{n_0} = \lim_{t \to 0} \frac{f_{n_0}(u + tv) - f_{n_0}(u)}{t}
= \lim_{t \to 0} \frac{f_n(u + tv) - f_n(u)}{t}
= \langle f'_n(u), v \rangle_n.
\]
Therefore $f'|_{E_{n_0}} = f'|_{n_0}$. Moreover
\[
\left\| f'_n(u) \right\|_n \geq \left\| f'_n(u) \right\|_{n_0} = \left\| f'|_{E_{n_0}}(u) \right\|_{n_0} = \left\| f'_n(u) \right\|_{n_0}.
\] (1.36)

Definition 1.9. Let $c \in \mathbb{R}$ and $f \in C^1(E, \mathbb{R})$. The functional f satisfies $(PS)^*_c$ condition if every sequence $(u_n)_n \subset E$ such that $u_n \in E_n$ and
\[
\lim f_n(u_n) = c \quad \text{and} \quad \lim_n \left\| f'_n(u_n) \right\|_n = 0,
\]
has a strongly convergent subsequence in E.

Definition 1.9’. Let $f \in C^1(E, \mathbb{R})$. The functional f satisfies \((PS)^*\) condition if every sequence $(u_n)_n \subset E$ such that $u_n \in E_n$ and
\[
\sup_n f_n(u_n) < \infty \quad \text{and} \quad \lim_n \|f_n'(u_n)\|_n = 0,
\]
has a strongly convergent subsequence in E.

We denote
\[
K^n_c := \{ x \in E_n : f^n(x) = c, \quad f_n'(x) = 0 \} = E_n \cap K_c.
\]

Theorem 1.17. Let $c \in \mathbb{R}$, $\rho > 0$ and $f \in C^1(E, \mathbb{R})$ be a functional. Suppose that f satisfies \((PS)^*_c\) condition and N is a neighborhood of K_c. Then there exist $\varepsilon_0 > 0$, $n_0 \in \mathbb{N}$ and a f-decreasing homotopy of homeomorphisms
\[
\eta_n : [0, 1] \times E_n \rightarrow E_n
\]
for $n \geq n_0$ such that if $\varepsilon \in (0, \varepsilon_0)$
\begin{enumerate}

 \item $\eta_n(t, u) = u$ if either $u \in K^n_c$ or $|f^n(u) - c| \geq 2\varepsilon$,

 \item $\eta_n(1, (f^n + \varepsilon \cap N) \cap E_n) \subset f^n - \varepsilon$,

 \item $\|\eta_n(t, u) - u\|_n \leq \rho, \quad \forall (t, u) \in [0, 1] \times E_n$.
\end{enumerate}

Proof. The condition \((PS)^*_c\) implies the existence of $\beta > 0$, $\varepsilon_0 > 0$, $\delta \in (0, \rho/2)$ and n_0 such that if $n \geq n_0$ and
\[
|f^n(u) - c| \leq \varepsilon_0, \quad u \in (E_n \cap N)_\beta.
\]
then
\[
\|f_n'(u)\|_n \geq \beta. \tag{1.37}
\]
It suffices to choose $\varepsilon \in (0, \min(\varepsilon_0, \beta/4))$ and applying Theorem 1.13 with $X = E_n$, $G = K^n_c$ and $F = E_n \cap N$. End Proof

1.4 Mountain-Pass Theorems

In critical point theory, minimax theorems characterize a critical value c of a functional $f : X \rightarrow \mathbb{R}$ as a minimax over a suitable class of sets A
\[
c = \inf_{A \in A} \max_{x \in A} f(x).
\]

We state the mountain-pass theorem due to Ambrosetti & Rabinowitz [ARa].
Theorem 1.18 (Ambrosetti & Rabinowitz, 1973). Let X be a real Banach space and $f \in C^1(X, \mathbb{R})$. Suppose that f satisfies (PS) condition, $f(0) = 0$ and

(i) there exist constants $\rho > 0$ and $\alpha > 0$ such that $f(x) \geq \alpha$ if $\|x\| = \rho$,

(ii) there is $e \in X$, $\|e\| > \rho$, such that $f(e) \leq 0$.

Then f has a critical value $c \geq \alpha$ which can be characterized as

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0,1] \times X) : \gamma(0) = 0, \gamma(1) = e \}.$$ \hspace{1cm} (1.39)

Geometrically, when $X = \mathbb{R}^2$ the assumptions (i) and (ii) mean that the origin lies in a valley surrounded by a “mountain”

$$\Gamma_f = \{(x, f(x)) \in \mathbb{R}^3 : x \in \mathbb{R}^2 \}.$$ \hspace{1cm} (1.39)

So, there must exist a mountain pass joining $(0,0)$ and $(e, f(e))$ that contains a critical value.

Note that (PS) condition is essential in Theorem 1.18 as the following example shows.

Example 1.3. The function $h(x, y) = x^2 + (x + 1)^3 y^2$ satisfies assumptions (i) and (ii) of Theorem 1.18 but does not satisfy (PS) condition and its unique critical point is $(0,0)$.

Proof. The point $(0,0)$ is a strict local minima and the unique critical point. If (PS) condition is satisfied then $(PS)_c$, with $c > 0$ defined by (1.38), is also satisfied. Let $(x_j, y_j)_j$ be a sequence such that

$$\lim_j \left(x_j^2 + (x_j + 1)^3 y_j^2 \right) = c > 0,$$ \hspace{1cm} (1.40)

$$\lim_j \left(2x_j + 3(x_j + 1)^2 y_j^2 \right) = 0,$$

$$\lim_j 2(x_j + 1)^3 y_j = 0.$$

Suppose that $\lim_j (x_j, y_j) = (x_0, y_0) \neq (0,0)$. Passing to the limit in (1.40) we obtain

$$x_0^2 + (x_0 + 1)^3 y_0^2 = c > 0,$$

$$2x_0 + 3(x_0 + 1)^2 y_0^2 = 0,$$

$$2(x_0 + 1)^3 y_0 = 0.$$
which implies a contradiction. End Proof

We give for completeness the proof of Theorem 1.18 based on the deformation approach.

Proof of Theorem 1.18. Suppose by contradiction that $K_c = \emptyset$. Take ε such that $0 < \varepsilon < \frac{\alpha}{2}$. From (i) and (ii) we have $c \geq \alpha > 2\varepsilon$ and let $\gamma \in \Gamma$ be such that

$$\max_{t \in [0,1]} f(\gamma(t)) < c + \varepsilon. \quad (1.41)$$

By $(PS)_c$, the condition $(PS)_c$ with c defined by (1.38), holds.

Let $\eta : [0,1] \times X \to X$ be a f-decreasing homotopy according to Corollary 1.7 and $\gamma_1 = \eta(1, \gamma)$. Then 0 and e belong to $\{x : |f(x) - c| \geq 2\varepsilon\}$ because $f(0) = 0$, $f(e) \leq 0$ and $c > 2\varepsilon$. By Corollary 1.7, (1) it follows that

$$\gamma_1(0) = \eta(1, \gamma(0)) = \eta(1, 0) = 0,$$

$$\gamma_1(1) = \eta(1, \gamma(1)) = \eta(1, e) = e,$$

which means that $\gamma_1 \in \Gamma$. By Corollary 1.7, (2) and (1.41) we obtain

$$\max_{t \in [0,1]} f(\gamma_1(t)) \leq c - \varepsilon,$$

which is a contradiction to the definition of c. Therefore $K_c \neq \emptyset$. End Proof

Deformation approach is used in various generalizations of Theorem 1.18. We refer to Rabinowitz [Ra2], Willem [Wil1], Schechter [Sch1].

Let us consider a characterization of a critical value b as

$$b = \sup_{N \in \mathcal{N}} \inf_{x \in \partial N} f(x), \quad (1.42)$$

where

$$\mathcal{N} = \{N \subset X, N \text{bounded and open}, 0 \in N, e \notin \bar{N}\}.$$

The following result is an extension of Rabinowitz [Ra2], Theorem 3.2, that uses $(PS)_\psi$ condition (see [Sch1]).

Theorem 1.19. Let $f \in C^1(X, \mathbb{R})$, $e \neq 0$ and $N_0 \in \mathcal{N}$ be such that

(i) $f(0) \leq 0$ and $f(x) \geq a > 0$ if $x \in \partial N_0$,

(ii) $f(e) \leq 0$.

Let $\psi \in \Psi$ and suppose that f satisfies $(PS)_{b,\psi}$ condition, where b is defined by (1.42). Then b is a critical value.

Proof. By (j) it follows that $b \geq a > 0$. Suppose by contradiction that $K_b = \emptyset$ and take $0 < \varepsilon < \frac{a}{2}$. Let $N_1 \in \mathcal{N}$ be such that
\[\inf_{x \in \partial N_1} f(x) \geq b - \varepsilon \]

and \(M > 0 \) be such that \(N_0 \subset B_M \).

From Theorem 1.15, there exists a \(f \)-increasing homotopy

\[\eta : [0, 1] \times X \to X, \]

such that

\[\eta(1, f_{b-\varepsilon} \cap N_0) \subset f_{b+\varepsilon}, \]

because \(N_0 \subset B_M \) and \(b > 2\varepsilon \). Since \(\eta(1, \cdot) : X \to X \) is a homeomorphism, \(N_2 = \eta(1, N_1) \) is open and \(\partial N_2 = \eta(1, \partial N_1) \). Moreover \(0 \in N_2 \) and \(e \notin N_2 \).

Indeed, since \(b > 2\varepsilon \) we have

\[f(0) \leq 0 < b - 2\varepsilon, \quad f(e) \leq 0 < b - 2\varepsilon. \]

Then \(0 \) and \(e \) belong to the set \(\{ x : |f(x) - b| \geq 2\varepsilon \} \) and, by Theorem 1.15 (1),

\[0 = \eta(1, 0) \in N_2, \quad e = \eta(1, e) \notin N_2. \]

So, \(N_2 \in \mathcal{N} \). And since \(f(\eta(1, x)) \geq b + \varepsilon \) if \(f(x) \geq b - \varepsilon \), and \(\partial N_1 \subset f_{b-\varepsilon} \)

we have

\[\inf_{x \in \partial N_2} f(x) = \inf_{x \in \partial N_1} f(\eta(1, x)) \geq b + \varepsilon, \]

which is a contradiction to the definition of \(b \). Therefore \(K_b \neq \emptyset \). End Proof.

We extend Theorem 1.19 assuming nonstrict inequality in (j).

Theorem 1.20. Let \(f \in C^1(X, \mathbb{R}) \), \(0 \) be a local minimum of \(f \) and there exist \(e \neq 0 \) such that \(0 = f(0) \geq f(e) \). Let \(\psi \in \Psi \) and suppose that \(f \) satisfies \((PS)_\psi\) condition. Then there exists a critical point \(y \), different from \(0 \) and \(e \).

Proof. Let \(\varepsilon \) be such that \(0 < \varepsilon < ||e|| \) and \(f(x) \geq f(0) \) if \(||x|| \leq \varepsilon \). We have the following alternative

(i) \(\exists \rho \in (0, \varepsilon) : c = \inf \{ f(x) : ||x|| = \rho \} > 0 \)

or

(ii) \(\forall \rho \in (0, \varepsilon) : \inf \{ f(x) : ||x|| = \rho \} = 0 \).

If (i) holds, since \(B_\rho(0) \in \mathcal{N} \) we have

\[b = \sup_{N \in \mathcal{N}} \inf_{x \in \partial N} f(x) \geq c = \inf_{x \in S_\rho(0)} f(x) > 0. \]
The assertion follows by Theorem 1.19.
Let (ii) holds and take \(r \) and \(R \) such that \(0 < r < R < \varepsilon \). Let \((x_j)_j \) be a minimizing sequence of \(f \) on \(S_\rho \) where \(\rho \) is such that \(r < \rho < R \).
Define
\[
\bar{f}(x) = \begin{cases}
 f\left(R \frac{x}{||x||}\right), & \text{if } ||x|| \geq R, \\
 f(x), & \text{if } ||x|| \leq R.
\end{cases}
\]
By Corollary 1.3, applied to \(\bar{f}(x) \), there exists \(y_j \in X \) such that
\[
\bar{f}(y_j) \leq \bar{f}(x_j),
\]
\[
||x_j - y_j|| \leq \frac{1}{\sqrt{j}},
\]
and
\[
\bar{f}(y_j) \leq \bar{f}(x) + \frac{1}{\sqrt{j}} ||x - y_j||, \quad \forall v \in X. \tag{1.43}
\]
For sufficiently large \(j \) the point \(y_j \) belongs to the interior of
\[
V = \{ x : r \leq ||x|| \leq R \}
\]
and \(\bar{f}(x_j) = f(x_j), \bar{f}(y_j) = f(y_j) \). If we take \(x = y_j + tv \) where \(||v|| = 1 \), and pass to the limit in (1.43) as \(t \to 0 \) we obtain that
\[
||f'(y_j)|| \leq \frac{1}{\sqrt{j}}. \tag{1.44}
\]
Since \(\psi \in \Psi \) by \(r \leq ||y_j|| \leq R \) and (1.44) it follows
\[
\psi(||y_j||)||f'(y_j)|| \to 0.
\]
By \((PS)_\psi\) condition there exists a critical point \(y \) such that \(||y|| = \rho \) for every \(\rho \) such that \(r < \rho < R \). End Proof

As a corollary of Theorem 1.20 we obtain the following “three critical point theorem” (which we refer as TCPT).

Corollary 1.8. Let \(f \in C^1(X, \mathbb{R}) \), \(\psi \in \Psi \) and suppose that \(f \) satisfies \((PS)_\psi\) condition. Suppose that \(f \) has two local minima. Then \(f \) has at least one more critical point.

Similar three critical points theorems with \((PS)\) condition were proved by Mawhin & Willem [MW1], Figueredo & Sollimini [FS], Pucci & Serrin [PS1].
In the variants of mountain-pass theorems considered above, we use deformation theorems proved in the previous section. Another approach to mountain-pass theorems is based on the Ekeland variational principle. We use it partially in the proof of Theorem 1.20. A general result in this direction is one of Aubin & Ekeland [AE]. To formulate their result we need another form of (PS) condition.

Definition 1.10 (Aubin & Ekeland, 1984). The C^1-functional $f : X \to \mathbb{R}$ satisfies (WPS) condition on $\Omega \subset X$ if for every sequence (x_j) in Ω such that

1. $|f(x_j)| \leq M$,
2. $f'(x_j) \neq 0$ for every $j \in \mathbb{N}$ and $\lim_j \|f'(x_j)\| = 0$,

there exists $\bar{x} \in X$ such that

$$\lim \inf_j f(x_j) \leq f(\bar{x}) \leq \lim \sup_j f(x_j), \quad f'(\bar{x}) = 0.$$

Relations between (PS) and (WPS) condition are given by a proposition proved in Aubin & Ekeland [AE].

Proposition 1.1. If $f : X \to \mathbb{R}$ satisfies (PS) condition on X, then f satisfies (WPS) condition on X. If X is a reflexive space, f is convex, lower semicontinuous and coercive, then f satisfies (WPS) condition on X.

Now, we formulate a variant of mountain-pass theorem with (WPS) condition proved in Aubin & Ekeland [AE]. For completeness we give the proof based on the Ekeland variational principle.

Theorem 1.21 (Aubin & Ekeland, 1984). Let $f \in C^1(X, \mathbb{R})$ satisfy the following assumptions:

1. there exists $\alpha > 0$ such that
 $$m(\alpha) = \inf \{f(x) : \|x\| = \alpha\} > f(0),$$

2. there exists $e \in X$ such that
 $$\|e\| > \alpha, \quad f(e) < m(\alpha),$$

3. f satisfies (WPS) condition on $\{x \in X : f(x) \geq m(\alpha)\}$. Then there exists $\bar{x} \in X$ such that $f(\bar{x}) \geq m(\alpha)$ and $f'(\bar{x}) = 0$.

Proof. We denote by \mathcal{C} the set of paths joining the points 0 and e in X
\[C = \{ c \in C([0, 1], X) : c(0) = 0, c(1) = e \}, \]

equipped with the distance
\[d(c_1, c_2) = \max \{ \| c_1(t) - c_2(t) \| : 0 \leq t \leq 1 \}. \]

The space \((C, d) \) is a complete metric space. Let \(F : C \to \mathbb{R} \) be the functional
\[F(c) = \max \{ f(c(t)) : 0 \leq t \leq 1 \}. \] (1.45)

It is lower semicontinuous and
\[F(c) \geq m(\alpha). \]

Indeed for every \(c \in C \) there exists \(t_\alpha \in [0, 1] \) such that \(\| c(t_\alpha) \| = \alpha \) and then,
\[F(c) \geq f(c(t_\alpha)) \geq m(\alpha). \]

By Ekeland principle, for every \(\varepsilon > 0 \) there exists \(c_\varepsilon \in C \), such that
\[F(c_\varepsilon) \leq \inf_{c \in C} F(c) + \varepsilon, \]
and
\[F(c) \geq F(c_\varepsilon) - \varepsilon d(c, c_\varepsilon), \quad \forall c \in C. \] (1.46)

Let \(\gamma \in C([0, 1], X) \) be such that \(\gamma(0) = \gamma(1) = 0 \). By (1.46) it follows that for \(h \in \mathbb{R}, h \neq 0 \),
\[F(c_\varepsilon + h\gamma) - F(c_\varepsilon) \geq -\varepsilon d(c_\varepsilon + h\gamma, c_\varepsilon), \]
that is,
\[\frac{1}{|h|} (F(c_\varepsilon + h\gamma) - F(c_\varepsilon)) \geq -\varepsilon \max_t \| \gamma(t) \|. \] (1.47)

On the other hand,
\[F(c_\varepsilon + h\gamma) - F(c_\varepsilon) = \max_t f(c_\varepsilon(t) + h\gamma(t)) - \max_t f(c_\varepsilon(t)) \]
\[= \max_t f(c_\varepsilon) + h \langle f'(c_\varepsilon(t)) \gamma(t), o(h) \rangle + o(h) - \max_t f(c_\varepsilon). \]
Let $f (c_\varepsilon (t)) = p (t)$ and $\langle f' (c_\varepsilon (t)), \gamma (t) \rangle = q (t)$. We have that p and q belong to $C ([0, 1], X)$. Let us introduce the functional $\Phi : C ([0, 1]) \to \mathbb{R}$ defined as

$$\Phi (\varphi) := \max_{t \in [0, 1]} \varphi (t),$$

for $\varphi \in C ([0, 1])$. The functional Φ is convex and the subdifferential $\partial \Phi$ is given by

$$\partial \Phi (\varphi) = \left\{ \mu \geq 0 : \int d\mu = 1, \quad \text{supp} (\mu) \subset M (\varphi) \right\},$$

where μ belongs to the space of Radon measures on $[0, 1]$ (see Cohn [Co]) and $M (\varphi) = \{ t : \varphi (t) = \Phi (\varphi) \}$. By (1.47) we obtain

$$-\varepsilon \max_t \| \gamma (t) \| \leq \lim_{h \to 0} \frac{1}{|h|} \left(F (c_\varepsilon + h\gamma) - F (c_\varepsilon) \right)$$

$$= \lim_{h \to 0} \frac{1}{|h|} \left(\Phi (p + hq) - \Phi (p) \right)$$

$$= \max \left\{ \langle q, \mu \rangle : \mu \in \partial \Phi (p) \right\}$$

$$= \max \left\{ \int \langle f' (c_\varepsilon), \gamma \rangle d\mu : \mu \in \partial \Phi (p) \right\}. $$

Taking $\gamma \in C ([0, 1], X)$, such that $\| \gamma \| \leq 1$, $\gamma (0) = \gamma (1) = 0$, by (1.48) and minimax theorem from Aubin & Ekeland [AE], Theorem 6.2.7, we have

$$-\varepsilon \leq \inf_{\gamma} \max_{\mu} \left\{ \int \langle f' (c_\varepsilon), \gamma \rangle d\mu : \begin{array}{c} \mu \in \partial \Phi (p) \\ \| \gamma \| \leq 1 \\ \gamma (0) = \gamma (1) = 0 \end{array} \right\}$$

and, then,

$$-\varepsilon \leq \max_{\mu} \inf_{\gamma} \left\{ \int \langle f' (c_\varepsilon), \gamma \rangle d\mu : \begin{array}{c} \mu \in \partial \Phi (p) \\ \| \gamma \| \leq 1 \\ \gamma (0) = \gamma (1) = 0 \end{array} \right\}$$

$$= \max \left\{ - \int \| f' (c_\varepsilon) \| d\mu : \mu \in \partial \Phi (p) \right\}$$

$$= - \min \left\{ \| f' (c_\varepsilon) \| : t \in M (f \circ c_\varepsilon) \right\}.$$
Minimax Theorems

\[f(c_\varepsilon(t_\varepsilon)) = \max_t f(c_\varepsilon(t)), \]

and

\[\|f'(c_\varepsilon(t_\varepsilon))\| \leq \varepsilon. \]

Taking now \(\varepsilon = \frac{1}{j} \) and \(c_{1/j}(t_{1/j}) = x_j \) we have proved that

\[m(\alpha) \leq f(x_j) \leq \inf f + \frac{1}{j}, \]

and

\[\lim_j \|f'(x_j)\| = 0. \]

By \((WPS)\) condition there exists \(\bar{x} \), such that

\[f(\bar{x}) \geq \liminf f(x_j) \geq m(\alpha), \quad f'(\bar{x}) = 0. \quad \text{End Proof} \]

The idea of the proof of last theorem has been modified by Ghoussob & Preiss [GP] in order to get information about the location of critical points. They introduce \((PS)_{G,c}\) condition around a set \(G \) at the level \(c \) as follows.

Definition 1.11 (Ghoussob & Preiss, 1989). The differentiable functional \(f : X \to \mathbb{R} \) satisfies \((PS)_{G,c}\) condition around a set \(G \) at the level \(c \) if every sequence \((x_j)_j \) in \(X \) such that

1. \(\lim_j d(x_j, G) = 0, \)
2. \(\lim_j f(x_j) = c, \)
3. \(\lim_j \|f'(x_j)\| = 0, \)

has a convergent subsequence.

The usual \((PS)\) condition corresponds to the case where \((PS)_{G,c}\) is verified for any \(G \subset X \) and any \(c \in \mathbb{R} \).

Definition 1.12. A closed subset \(G \) of a Banach space separates two points \(u \) and \(v \) in \(X \) if \(u \) and \(v \) belong to disjoint connected components of \(X \setminus G \).

The following mountain-pass theorem has been proved in Ghoussoub & Preiss [GP].
Theorem 1.22 (Ghoussoub & Preiss, 1989). Let $f : X \to \mathbb{R}$ be a Gâteaux-differentiable functional such that $f' : X \to X^*$ is continuous from X with norm topology to X^* with weak* topology. Fix $e \neq 0$ and define

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0, 1]} f(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0, 1], X) : \gamma(0) = 0, \gamma(1) = e \}.$$

Let G be a closed subset such that $G \cap f_c$ separates 0 and e. Assume that f satisfies $(PS)_{G,c}$ condition. Then there exists $\bar{x} \in G$ such that $f(\bar{x}) = c$ and $f'(\bar{x}) = 0$.

The mountain-pass theorem follows from Theorem 1.22 with $G = X$.

The proof of Theorem 1.22 follows the idea of the proof of Theorem 1.21 but, instead of the functional $F(\gamma) = \max_{0 \leq t \leq 1} f(\gamma(t))$, it is considered the perturbed functional

$$I(\gamma) = \max_{0 \leq t \leq 1} (f(\gamma(t)) + \psi(\gamma(t))),$$

where

$$\psi(x) = \max\{0, \varepsilon^2 - \varepsilon d(x, G \cap f_c)\}.$$

Further Ekeland [Ek2] generalizes Theorem 1.22 assuming a variant of $(PS)_{G,c}$ condition in the sense of Cerami.

Definition 1.13. The differentiable functional $f : X \to \mathbb{R}$, satisfies $(PSC)_{G,c}$ condition around a set G at the level c if every sequence $(x_j)_j$ in X such that:

1. $\lim_j d(x_j, G) = 0$,
2. $\lim_j f(x_j) = c$,
3. $\lim_j (1 + ||x_j||)||f'(x_j)|| = 0$,

has a convergent subsequence.

Theorem 1.23 (Ekeland, 1990). Let $f : X \to \mathbb{R}$ be a Gâteaux-differentiable functional, such that $f' : X \to X^*$ is continuous from X with norm topology to X^* with weak* topology. Fix $e \neq 0$ and define

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0, 1]} f(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0, 1], X) : \gamma(0) = 0, \gamma(1) = e \}.$$
Let G be a closed subset such that $G \cap f_c$ separates 0 and c. Assume f satisfies $(PSC)_{G,c}$ condition. Then there exists $\bar{x} \in G$ such that $f(\bar{x}) = c$ and $f'(\bar{x}) = 0$.

Let us note also the variant of mountain-pass theorem due to Brezis & Nirenberg [BN] without Palais–Smale condition. Let Q be a compact metric space, Q_* be a nonempty closed subset of Q and p_* be a fixed continuous map on Q. Define

$$\mathcal{P} := \{ p \in C(Q, X) : p(t) = p(t) \text{ if } t \in Q_* \}$$

and

$$c := \inf_{p \in \mathcal{P}} \max_{t \in Q} f(p(t)).$$

Theorem 1.24 (Brezis & Nirenberg, 1991). Let $f \in C^1(X, \mathbb{R})$. Assume that for every $p \in \mathcal{P}$, $\max_{t \in Q} f(p(t))$ is attained at some point in $Q \setminus Q_*$. Then there exists a sequence $(x_j)_j$ in X such that

$$\lim_j f(x_j) = c \quad \text{and} \quad \lim_j \| f'(x_j) \| = 0.$$

In addition, if f satisfies $(PS)_c$ condition, then c is a critical value. Moreover, if $(p_j)_j$ is any sequence in \mathcal{P} such that

$$c = \lim_j \max_{t \in Q} f(p_j(t)),$$

then there exists a sequence $(t_j)_j$ in Q such that

$$\lim_j f(p_j(t_j)) = c \quad \text{and} \quad \lim_j \| f'(p_j(t_j)) \| = 0.$$

We obtain Theorems 1.22 and 1.24 from a general mountain-pass theorem for locally Lipschitz functionals in Chapter 5.

Finally, we note that the mountain-pass theorem is proved also in scales of Banach spaces by Struwe [St1], [St2]. His result based on Deformation Theorem 1.16 in scales of Banach spaces is as follows

Theorem 1.25. Let $f : E \to \mathbb{R}$ be a C^1-functional, $(X_n)_n$ be a scale of subspaces of X such that $E_n \subset E_{n+1}$ and $\bigcup_{n=1}^{\infty} E_n$ is dense in E. Assume that there exist $e \neq 0$, $\rho > 0$ and $\alpha > 0$ such that
Minimization and Mountain-pass Theorems

(1) \(f(0) = 0, \ f(u) \geq \alpha \) for every \(u \) with \(||u|| = \rho \),
(2) \(f(e) < \alpha \),
(3) \(f \) satisfies \((PS)_c^* \) condition with \(c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} f(\gamma(t)) \).

Then there exists \(v \in K_c \).

Proof. Assume that \(K_c \) is empty. By Theorem 1.17, for sufficiently small \(\varepsilon \) and sufficiently large \(n \), there exists a deformation \(\eta_n : [0,1] \times E_n \to E_n \) such that

\[
\eta_n(1, f^c + \varepsilon \cap E_n) \subset f^{c - \varepsilon}. \quad (1.49)
\]

Let \(\gamma \in \Gamma \) be such that

\[
c \leq \max_{t \in [0,1]} f(\gamma(t)) \leq c + \varepsilon,
\]

and \(\gamma_n = \eta_n(1, \gamma) \). By the properties of \(\eta_n \) and assumptions (1) and (2), it follows that \(\gamma_n \in \Gamma \). By (1.49), we have \(\max_{t \in [0,1]} f(\gamma_n(t)) \leq c - \varepsilon \) which contradicts to the definition of \(c \). End Proof
Bibliography

Minimization and Mountain-pass Theorems

Minimization and Mountain-pass Theorems

